SummaryTo investigate the uptake and long-distance translocation of sulphate in plants, we have characterized three cell-type-speci®c sulphate transporters, Sultr1;1, Sultr2;1 and Sultr2;2 in Arabidopsis thaliana. Heterologous expression in the yeast sulphate transporter mutant indicated that Sultr1;1 encodes a high-af®nity sulphate transporter (K m for sulphate 3.6 K 0.6 mM), whereas Sultr2;1 and Sultr2;2 encode low-af®nity sulphate transporters (K m for sulphate 0.41 K 0.07 mM and > 1.2 mM, respectively). In Arabidopsis plants expressing the fusion gene construct of the Sultr1;1 promoter and green¯uorescent protein (GFP), GFP was localized in the lateral root cap, root hairs, epidermis and cortex of roots. bglucuronidase (GUS) expressed with the Sultr2;1 promoter was speci®cally accumulated in the xylem parenchyma cells of roots and leaves, and in the root pericycles and leaf phloem. Expression of the Sultr2;2 promoter±GFP fusion gene showed speci®c localization of GFP in the root phloem and leaf vascular bundle sheath cells. Plants continuously grown with low sulphate concentrations accumulated high levels of Sultr1;1 and Sultr2;1 mRNA in roots and Sultr2;2 mRNA in leaves. The abundance of Sultr1;1 and Sultr2;1 mRNA was increased remarkably in roots by short-term stress caused by withdrawal of sulphate. Addition of selenate in the sulphate-suf®cient medium increased the sulphate uptake capacity, tissue sulphate content and the abundance of Sultr1;1 and Sultr2;1 mRNA in roots. Concomitant decrease of the tissue thiol content after selenate treatment was consistent with the suggested role of glutathione (GSH) as a repressive effector for the expression of sulphate transporter genes.
SummaryThe completion of the Arabidopsis thaliana genome has revealed that there are nine members of the Pht1 family of phosphate transporters in this species. As a step towards identifying the role of this gene family in phosphorus nutrition, we have isolated the promoter regions from each of these genes, and fused them to the reporter genes b-glucuronidase and/or green¯uorescent protein. These chimeric genes have been introduced into A. thaliana, and reporter gene expression has been assayed in plants grown in soil containing high and low concentrations of inorganic phosphate (Pi). Four of these promoters were found to direct reporter gene expression in the root epidermis, and were induced under conditions of phosphate deprivation in a manner similar to previously characterised Pht1 genes. Other members of this family, however, showed expression in a range of shoot tissues and in pollen grains, which was con®rmed by RT-PCR. We also provide evidence that the root epidermally expressed genes are expressed most strongly in trichoblasts, the primary sites for uptake of Pi. These results suggest that this gene family plays a wider role in phosphate uptake and remobilisation throughout the plant than was previously believed.
Epitaxial GaAs grown by molecular beam epitaxy (MBE) at low substrate temperatures is observed to have a significantly shorter carrier lifetime than GaAs grown at normal substrate temperatures. Using femtosecond time-resolved-reflectance techniques, a subpicosecond (~0.4 ps) carrier lifetime has been measured for GaAs grown by MBE at-200°C and annealed at 600 "C. With the same material as a photoconductive switch we have measured electrical pulses with a full-width at half-maximum of 0.6 ps using the technique of electro-optic sampling. Good responsivity for a photoconductive switch is observed, corresponding to a mobility of the photoexcited carriers of-120-150 cm"/V s. GaAs grown by MBE at 200 "C! and annealed at 600 "C is also semi-insulating, which results in a low dark current in the switch application. The combination of fast recombination lifetime, high carrier mobility, and high resistivity makes this material ideal for a number of. subpicosecond photoconductive applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.