The conserved, abundant chromosomal protein HMG1 consists of two highly homologous, folded, basic DNA‐binding domains, each of approximately 80 amino acid residues, and an acidic C‐terminal tail. Each folded domain represents an ‘HMG box’, a sequence motif recently recognized in certain sequence‐specific DNA‐binding proteins and which also occurs in abundant HMG1‐like proteins that bind to DNA without sequence specificity. The HMG box is defined by a set of highly conserved residues (most distinctively aromatic and basic) and appears to define a novel DNA‐binding structural motif. We have expressed the HMG box region of the B‐domain of rat HMG1 (residues 88–164 of the intact protein) in Escherichia coli and we describe here the determination of its structure by 2D 1H‐NMR spectroscopy. There are three alpha‐helices (residues 13–29, 34–48 and 50–74), which together account for approximately 75% of the total residues and contain many of the conserved basic and aromatic residues. Strikingly, the molecule is L‐shaped, the angle of approximately 80 degrees between the two arms being defined by a cluster of conserved, predominantly aromatic, residues. The distinctive shape of the HMG box motif, which is distinct from hitherto characterized DNA‐binding motifs, may be significant in relation to its recognition of four‐way DNA junctions.
HMG1 has two homologous, folded DNA-binding domains ("HMG boxes"), A and B, linked by a short basic region to an acidic C-terminal domain. Like the whole protein, which may perform an architectural role in chromatin, the individual boxes bind to DNA without sequence specificity, have a preference for distorted or prebent DNA, and are able to bend DNA and constrain negative superhelical turns. They show qualitatively similar properties with quantitative differences. We have previously determined the structure of the HMG box from the central B-domain (77 residues) by two-dimensional NMR spectroscopy, which showed that it contains a novel fold [Weir et al. (1993) EMBO J. 12, 1311-1319]. We have now determined the structure of the A-domain (as a Cys-->Ser mutant at position 22 to avoid oxidation, without effect on its DNA-binding properties or structure) using heteronuclear three- and four-dimensional NMR spectroscopy. The A-domain has a very similar global fold to the B-domain and the Drosophila protein HMG-D [Jones et al. (1994) Structure 2, 609-627]. There are small differences between A and B, in particular in the orientation of helix I, where the B-domain is more similar to HMG-D than it is to the A-domain; these differences may turn out to be related to the subtle differences in functional properties between the two domains [Teo et al. (1995) Eur. J. Biochem. 230, 943-950] and will be the subject of further investigation. NMR studies of the interaction of the A-domain of HMG1 with a short double-stranded oligonucleotide support the notion that the protein binds via the concave face of the L-shaped structure; extensive contacts with the DNA are made by the N-terminal extended strand, the N-terminus of helix I, and the C-terminus of helix II. These contacts are very similar to those seen in the LEF-1 and SRY-DNA complexes [Love et al. (1995) Nature 376, 791-795; Werner et al. (1995) Cell 81, 705-714].
Cation-pi bonds and amino-aromatic interactions are known to be important contributors to protein architecture and stability, and their role in ligand-protein interactions has also been reported. Many biologically active amines contain substituted ammonium moieties, and cation-pi bonding and amino-aromatic interactions often enable these molecules to associate with proteins. The role of organic cation-pi bonding and amino-aromatic interactions in the recognition of small-molecule amines and peptides by proteins is an important topic for those involved in structure-based drug design, and although the number of structures determined for proteins displaying these interactions is small, general features are beginning to emerge. This review explores the role of cation-pi bonding and amino-aromatic interactions in the biological molecular recognition of amine ligands. Perspectives on the design of ammonium-ligand-binding sites are also discussed.
Structure of the chromatin binding (chromo) domain from mouse modifier protein 1 protein, an activator, might also be localized to chromatin Linda J.Ball, Natalia V.Murzina, via its chromo domain (Koonin et al., 1995).
In cancer, the biochemical pathways that are dominated by the two tumour-suppressor proteins, p53 and Rb, are the most frequently disrupted. Cyclin D-dependent kinases phosphorylate Rb to control its activity and they are, in turn, specifically inhibited by the Ink4 family of cyclin-dependent kinase inhibitors (CDKIs) which cause arrest at the G1 phase of the cell cycle. Mutations in Rb, cyclin D1, its catalytic subunit Cdk4, and the CDKI p16Ink4a, which alter the protein or its level of expression, are all strongly implicated in cancer. This suggests that the Rb 'pathway' is of particular importance. Here we report the structure of the p19Ink4d protein, determined by NMR spectroscopy. The structure indicates that most mutations to the p16Ink4a gene, which result in loss of function, are due to incorrectly folded and/or insoluble proteins. We propose a model for the interaction of Ink4 proteins with D-type cyclin-Cdk4/6 complexes that might provide a basis for the design of therapeutics against cancer. The sequences of the Ink4 family of CDKIs are highly conserved
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.