Paclitaxel is a widely used anti-cancer agent. Conjugates of paclitaxel with poly(glutamic acid) have shown great promise in preclinical trials, and clinical trials are now underway. Preclinical data suggest that more paclitaxel is preferentially delivered to tumor sites vs. nonconjugated paclitaxel. When poly(glutamic acid) is conjugated to other families of cancer drugs, similar improvements in effectiveness and reduced toxicity are observed. Optimization of poly(glutamic acid) for use in drug delivery applications is a key step in making this technology viable.
Poly(glutamic acid) (PGA) is a water-soluble, biodegradable biopolymer that is produced by microbial fermentation. Recent research has shown that PGA can be used in drug delivery applications for the controlled release of paclitaxel (Taxol) in cancer treatment. A fundamental understanding of the key fermentation parameters is necessary to optimize the production and molecular weight characteristics of poly(glutamic acid) by Bacillus subtilis for paclitaxel and other applications of pharmaceuticals for controlled release. Because of its high molecular weight, PGA fermentation broths exhibit non-Newtonian rheology. In this article we present experimental results on the batch fermentation kinetics of PGA production, mass transfer of oxygen, specific oxygen uptake rate, broth rheology, and molecular weight characterization of the PGA biopolymer.
The market for microbial biopolymers is currently expanding to include several emerging biomedical applications. Specifically, these applications are drug delivery and wound healing. A fundamental understanding of the key fermentation parameters is necessary in order to optimize the production of these biopolymers. Considering that most microbial biopolymer systems exhibit non-Newtonian rheology, oxygen mass transfer can be an important parameter to optimize and control. In this article, we present a critical review of recent advances in rheological and mass transfer characteristics of selected biopolymers of commercial interest in biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.