Projected effects of climate change on animal distributions primarily focus on consequences of temperature and largely ignore impacts of altered precipitation. While much evidence supports temperature‐driven range shifts, there is substantial heterogeneity in species' responses that remains poorly understood. We resampled breeding ranges of birds across three elevational transects in the Sierra Nevada Mountains, USA, that were extensively surveyed in the early 20th century. Presence–absence comparisons were made at 77 sites and occupancy models were used to separate significant range shifts from artifacts of false absences. Over the past century, rising temperature pushed species upslope while increased precipitation pulled them downslope, resulting in range shifts that were heterogeneous within species and among regions. While 84% of species shifted their elevational distribution, only 51% of upper or lower range boundary shifts were upslope. By comparison, 82% of range shifts were in a direction predicted by changes in either temperature or precipitation. Species were significantly more likely to shift elevational ranges than their ecological counterparts if they had small clutch sizes, defended all‐purpose territories, and were year‐round residents, results that were in opposition to a priori predictions from dispersal‐related hypotheses. Our results illustrate the complex interplay between species‐specific and region‐specific factors that structure patterns of breeding range change over long time periods. Future projections of increasing temperature and highly variable precipitation regimes create a strong potential for heterogeneous responses by species at range margins.
Contact zones between recently diverged taxa offer unique opportunities to test whether the forms are reproductively isolated and therefore distinct species. The Pacific-slope flycatcher Empidonax difficilis and Cordilleran flycatcher Empidonax occidentalis are closely related taxa that were officially separated into two species in 1989, a treatment that has been controversial due to reports of phenotypically intermediate birds across the southern interior of British Columbia and Alberta. We present the first analysis of molecular variation across this region, in order to determine whether there is genetic introgression between the taxa. Allopatric populations of Pacific-slope and Cordilleran flycatchers belong to distinct mitochondrial clades, and all of the individuals sampled in interior southwestern Canada have the Pacific-slope haplotype. In contrast, variation in nuclear DNA (AFLPs) indicates hybridization between Pacific-slope and Cordilleran flycatchers in this region. We suggest that the discordance between the mitochondrial and nuclear markers most likely results from stochastic loss of Cordilleran mitochondrial haplotype lineages facilitated by asymmetries in mating due to earlier arrival and greater abundance of Pacific-slope flycatchers in the contact zone. The discovery of hybridization between Pacific-slope and Cordilleran flycatchers in southwestern Canada may call into question the decision to split them into two species. On the other hand, allopatric populations are genetically distinct in both mitochondrial and nuclear DNA, and the hybridization might not affect populations outside of the contact zone. This study highlights the importance of employing multiple genetic markers in studies of contact zones between closely related species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.