In this study, we investigated the influence of different weather aspects on breeding performance, food supply and nest-space use in hoopoe offspring (Upupa epops). Camera recordings of 88 nests were used to examine how ambient environmental conditions influence food supply, offspring nest-space use and the trade-off nestlings face regarding the two mainly used locations in the nest. Therefore, we provide a comprehensive analysis involving different factors including weather parameters together with food provisioned to nestlings on different temporal scales to identify the factors having the most influence on nest-space use. We found that different breeding conditions significantly influenced how nestlings used the nest. During excessively humid weather, nestlings spent more time under the entrance hole when small food was delivered. However, nestlings supplied with large prey more often remained hidden in the distant area, despite the adverse weather situation. In all three aspects and temporal scales, our analysis confirmed that prey was the most important factor influencing offspring nest-space use, suggesting a crucial role of large insects for hoopoes. Finally, we found that long-term effects of weather affect overall food provisioned to nestlings and thus offspring behaviour. We provide evidence that parental feeding location and prey size, which are in turn influenced by weather conditions, are the most influential factors for nest-space use. This study expands our knowledge of parent–offspring communication and how environmental factors may lead to differential nest-space use, which may be regarded as the earliest form of habitat preference in birds.
Significance statement
Nests are usually constrained in space but designed to protect offspring from the environment while giving them limited possibilities to express behavioural diversity. This is particularly true for bird nests, where nestlings are usually packed in close contact with one another and without much space for movement, except begging. Here we demonstrate that nest features, such as available nest space together with environmental conditions surrounding a nest, influence nestling strategies and behaviours, including social interactions between nest mates, which further leads to fitness consequences. Our results seem to be of great importance for habitat selection theory in birds, in particular regarding the early development of habitat preferences (imprinting) and use. On the other hand, the result may also have important implications for conservation issues given that nestling behaviour may be used as a determinant of environmental quality.