Two main mechanisms of egg rejection, the main defence of hosts against brood parasites, have been described: ejection and desertion. Desertion of the parasitized nest is much more costly and is usually exhibited by small-sized host species unable to remove the parasitic egg. However, nest desertion is frequently assumed to be an anti-parasite strategy even in medium or large-sized host species. Th is assumption should be considered with caution because: 1) large-sized hosts able to eject the parasitic egg should eject it rather than desert the nest, and 2) breeding birds may desert their nests in response to diff erent disturbances other than brood parasitism. Th is problem is especially important in the common blackbird Turdus merula because this is a medium-sized species, potential host of the common cuckoo Cuculus canorus , in which desertion has been frequently reported as a response to cuckoo egg models. Here, we seek to determine whether nest desertion can be considered a response unequivocally directed to the parasitic egg in medium-sized hosts using the blackbird as the study species. In an experimental study in which we have manipulated levels of mimicry and size of experimental eggs, we have found that both colour (mimetic and non-mimetic; at least for human vision) and size (small, medium, and large) signifi cantly aff ected ejection rates but not nest desertion rates. In fact, although large eggs disproportionally provoked nest desertion more frequently than did small or medium-sized eggs, cuckoo-sized parasitic eggs were not deserted allowing us to conclude that desertion is unlikely to be an adaptive response to brood parasitism at least for this species.
Cuttlebone, the sophisticated buoyancy device of cuttlefish, is made of extensive superposed chambers that have a complex internal arrangement of calcified pillars and organic membranes. It has not been clear how this structure is assembled. We find that the membranes result from a myriad of minor membranes initially filling the whole chamber, made of nanofibres evenly oriented within each membrane and slightly rotated with respect to those of adjacent membranes, producing a helical arrangement. We propose that the organism secretes a chitin–protein complex, which self-organizes layer-by-layer as a cholesteric liquid crystal, whereas the pillars are made by viscous fingering. The liquid crystallization mechanism permits us to homologize the elements of the cuttlebone with those of other coleoids and with the nacreous septa and the shells of nautiloids. These results challenge our view of this ultra-light natural material possessing desirable mechanical, structural and biological properties, suggesting that two self-organizing physical principles suffice to understand its formation.
Rejection of the parasitic egg is the most important defence of hosts against brood parasites. However, this response is variable among and within species, and egg discrimination is not always followed by egg rejection. Low risk of parasitism and high risk of rejection costs may lead to the acceptance of the parasitic egg even if it has been previously recognized. The main aim of this paper is to answer a relevant question: can a single egg trait provoke the acceptance of an experimental egg previously recognized as foreign? Increased egg mass should hamper the ejection of an egg that has been discriminated because ejection of a heavy egg may imply higher rejection costs for hosts. We have tested this prediction by experimentally parasitizing natural nests of Common Blackbirds (Turdus merula) with non-mimetic model eggs of different mass (heavy, normal-weight, and light) while controlling for potential confounding factors such as egg size and colour. Our results showed that blackbirds more frequently accepted heavy eggs, even when previously recognized. This differential acceptance may be related to insufficient motivation to assume the higher costs that the ejection of a heavy egg could impose.
Brood parasitism frequently leads to a total loss of host fitness, which selects for the evolution of defensive traits in host species. Experimental studies have demonstrated that recognition and rejection of the parasite egg is the most common and efficient defence used by host species. Egg-recognition experiments have advanced our knowledge of the evolutionary and coevolutionary implications of egg recognition and rejection. However, our understanding of the proximate mechanisms underlying both processes remains poor. Egg rejection is a complex behavioural process consisting of three stages: egg recognition, the decision whether or not to reject the putative parasitic egg and the act of ejection itself. We have used the blackbird (Turdus merula) as a model species to explore the relationship between egg recognition and the act of egg ejection. We have manipulated the two main characteristics of parasitic eggs affecting egg ejection in this grasp-ejector species: the degree of colour mimicry (mimetic and non-mimetic, which mainly affects the egg-recognition stage of the egg-rejection process) and egg size (small, medium and large, which affects the decision to eject), while maintaining a control group of non-parasitized nests. The behaviour of the female when confronted with an experimental egg was filmed using a video camera. Our results show that egg touching is an indication of egg recognition and demonstrate that blackbirds recognized (i.e., touched) non-mimetic experimental eggs significantly more than mimetic eggs. However, twenty per cent of the experimental eggs were touched but not subsequently ejected, which confirms that egg recognition does not necessarily mean egg ejection and that accepting parasitic eggs, at least sometimes, is the consequence of acceptance decisions. Regarding proximate mechanisms, our results show that the delay in egg ejection is not only due to recognition problems as usually suggested, given that experimental eggs are not touched significantly more often. Thus, the delay in egg ejection is mainly the consequence of a delay in the decision to eject, probably triggered by mechanical constraints imposed by eggs that are harder to eject (i.e. larger). Our results offer important information on the relationships between recognition and ejection and contribute to a better understanding of host defences against brood parasites.
Many host species have evolved sophisticated defences to mitigate the high fitness costs imposed by brood parasitism. Even though the physiological mechanisms behind such defences can offer important insights into the evolutionary relationship between brood parasites and hosts, they have received little attention so far. Hormones play a critical role in the regulation of bird reproduction, which make them a key element when investigating the physiological effects of brood parasitism on hosts. Here, we experimentally parasitized Eurasian blackbird (Turdus merula) nests with non-mimetic eggs to study its impact on the hormonal levels (corticosterone and prolactin) of females during incubation, as well as the magnitude of the response to the standardized stress protocol in parasitized and non-parasitized individuals. Parasitized females had higher baseline corticosterone levels and showed a poorer body condition than non-parasitized birds, while we found no differences for prolactin levels. Both parasitized and non-parasitized females responded to the standardized-stress protocol with a significant increase in corticosterone levels. However, the decrease in prolactin after the standardized stress protocol was significantly more pronounced in parasitized individuals. Our results suggest that the presence of a non-mimetic parasitic egg involves a stressful situation for hosts, negatively affecting the physical state of parasitized females. Unaffected prolactin levels of parasitized individuals could explain the absence of nest desertion found in this species in response to parasitism. Finally, both hormones were not correlated in blackbirds, confirming that their combined study provides valuable pieces of information on the endocrine mechanisms underlying behavioural responses in animals, including hosts of brood parasites. Significance statementPhysiological mechanisms behind avian brood parasitism remain unclear. In this study, we assessed the effect of experimental parasitism on the hormonal profiles of hosts. We found that the presence of a non-mimetic egg in the nest modified baseline corticosterone levels, but not prolactin levels, of parasitized females and negatively impacted their body condition. Moreover, experimental parasitism affected the prolactin response to stress. These results expand previous information on the endocrine consequences of brood parasitism at other stages of the breeding cycle (nestling and fledgling stage) and might shed light on the hormonal mechanisms that underlie the host response against parasitic eggs. Communicated by M. Leonard
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.