Humans have infected a wide range of animals with SARS-CoV-2 1-5 , but the establishment of a new natural animal reservoir has not been observed. Here we document that free-ranging white-tailed deer (Odocoileus virginianus) are highly susceptible to infection with SARS-CoV-2, are exposed to multiple SARS-CoV-2 variants from humans and are capable of sustaining transmission in nature. Using real-time PCR with reverse transcription, we detected SARS-CoV-2 in more than one-third (129 out of 360, 35.8%) of nasal swabs obtained from O. virginianus in northeast Ohio in the USA during January to March 2021. Deer in six locations were infected with three SARS-CoV-2 lineages (B. 1.2, B.1.582 and B.1.596). The B.1.2 viruses, dominant in humans in Ohio at the time, infected deer in four locations. We detected probable deer-to-deer transmission of B.1.2, B.1.582 and B.1.596 viruses, enabling the virus to acquire amino acid substitutions in the spike protein (including the receptor-binding domain) and ORF1 that are observed infrequently in humans. No spillback to humans was observed, but these findings demonstrate that SARS-CoV-2 viruses have been transmitted in wildlife in the USA, potentially opening new pathways for evolution. There is an urgent need to establish comprehensive 'One Health' programmes to monitor the environment, deer and other wildlife hosts globally.As of 9 November 2021, SARS-CoV-2, the virus responsible for coronavirus disease 2019 (COVID-19), has caused more than 5 million deaths globally 6 . The zoonotic origins of SARS-CoV-2 are not fully resolved 7 , exposing large gaps in our knowledge of susceptible host species and potential new reservoirs. Natural infections of SARS-CoV-2 linked to human exposure have been reported in domestic animals such as cats, dogs and ferrets, and in wildlife under human care, including several species of big cats, Asian small-clawed otters, western lowland gorillas and mink 1 . Detection of SARS-CoV-2 by PCR in free-ranging wildlife has been limited to small numbers of mink in Spain and in Utah in the USA, which were thought to have escaped from nearby farms 8,9 . An in silico study modelling SARS-CoV-2 binding sites on the angiotensin-converting enzyme 2 (ACE2) receptor across host species predicted that cetaceans, rodents, primates and several species of deer are at high risk of infection 10 . Experimental infections have identified additional animal species susceptible to SARS-CoV-2, including hamsters, North American raccoons, striped skunks, white-tailed deer, raccoon dogs, fruit bats, deer mice, domestic European rabbits, bushy-tailed woodrats, tree shrews and multiple non-human primate species [11][12][13][14][15][16][17][18][19][20] . Moreover, several species are capable of intraspecies SARS-CoV-2 transmission [13][14][15]17,[21][22][23] , including cats, ferrets, fruit bats, hamsters, raccoon dogs, deer mice and white-tailed deer. Vertical transmission has also been documented in experimentally infected white-tailed deer 23 . In July 2021, antibodies for SARS-CoV...
Carbapenem-resistant Enterobacteriaceae (CRE) present an urgent threat to public health. While use of carbapenem antimicrobials is restricted for foodproducing animals, other -lactams, such as ceftiofur, are used in livestock. This use may provide selection pressure favoring the amplification of carbapenem resistance, but this relationship has not been established. Previously unreported among U.S. livestock, plasmid-mediated CRE have been reported from livestock in Europe and Asia. In this study, environmental and fecal samples were collected from a 1,500-sow, U.S. farrow-to-finish operation during 4 visits over a 5-month period in 2015. Samples were screened using selective media for the presence of CRE, and the resulting carbapenemase-producing isolates were further characterized. Of 30 environmental samples collected from a nursery room on our initial visit, 2 (7%) samples yielded 3 isolates, 2 sequence type 218 (ST 218) Escherichia coli and 1 Proteus mirabilis, carrying the metallo--lactamase gene bla IMP-27 on IncQ1 plasmids. We recovered on our third visit 15 IMP-27-bearing isolates of multiple Enterobacteriaceae species from 11 of 24 (46%) environmental samples from 2 farrowing rooms. These isolates each also carried bla IMP-27 on IncQ1 plasmids. No CRE isolates were recovered from fecal swabs or samples in this study. As is common in U.S. swine production, piglets on this farm receive ceftiofur at birth, with males receiving a second dose at castration (Ϸday 6). This selection pressure may favor the dissemination of bla IMP-27 -bearing Enterobacteriaceae in this farrowing barn. The absence of this selection pressure in the nursery and finisher barns likely resulted in the loss of the ecological niche needed for maintenance of this carbapenem resistance gene.
Close contact between pigs and humans could result in zoonotic transmission.
BackgroundPorcine Epidemic Diarrhea virus (PEDV) is a highly transmissible coronavirus that causes a severe enteric disease that is particularly deadly for neonatal piglets. Since its introduction to the United States in 2013, PEDV has spread quickly across the country and has caused significant financial losses to pork producers. With no fully licensed vaccines currently available in the United States, prevention and control of PEDV disease is heavily reliant on biosecurity measures. Despite proven, effective biosecurity practices, multiple sites and production stages, within and across designated production flows in an Ohio swine operation broke with confirmed PEDV in January 2014, leading the producer and attending veterinarian to investigate the route of introduction.Case presentationOn January 12, 2014, several sows within a production flow were noted with signs of enteric illness. Within a few days, illness had spread to most of the sows in the facility and was confirmed by RT-PCR to be PEDV. Within a short time period, confirmed disease was present on multiple sites within and across breeding and post weaning production flows of the operation and mortality approached 100% in neonatal piglets. After an epidemiologic investigation, an outsourced, pelleted piglet diet was identified for assessment, and a bioassay, where naïve piglets were fed the suspected feed pellets, was initiated to test the pellets for infectious PEDV.ConclusionsThe epidemiological investigation provided strong evidence for contaminated feed as the source of the outbreak. In addition, feed pellets collected from unopened bags at the affected sites tested positive for PEDV using RT-PCR. However, the bioassay study was not able to show infectivity when feeding the suspected feed pellets to a small number of naïve piglets. The results highlight the critical need for surveillance of feed and feed components to further define transmission avenues in an effort to limit the spread of PEDV throughout the U.S. swine industry.
Local health care providers should be alerted to the possibility of human infection with variant influenza A viruses, especially during fairs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.