Intestinal microbial dysbiosis, intestinal inflammation, and Th17 immunity are all linked to the pathophysiology of spondyloarthritis (SpA); however, the mechanisms linking them remain unknown. One potential hypothesis suggests that the dysbiotic gut microbiome as a whole produces metabolites that influence human immune cells. To identify potential disease-relevant, microbiome-produced metabolites, we performed metabolomics screening and shotgun metagenomics on paired colon biopsies and fecal samples, respectively, from subjects with axial SpA (axSpA, N=21), Crohn’s disease (CD, N=27), and Crohn’s-axSpA overlap (CD-axSpA, N=12), as well as controls (HC, N=24). Using LC-MS based metabolomics of 4 non-inflamed pinch biopsies of the distal colon from subjects, we identified significant alterations in tryptophan pathway metabolites, including an expansion of indole-3-acetate (IAA) in axSpA and CD-axSpA compared to HC and CD and indole-3-acetaldehyde (I3Ald) in axSpA and CD-axSpA but not CD compared to HC, suggesting possible specificity to the development of axSpA. We then performed shotgun metagenomics of fecal samples to characterize gut microbial dysbiosis across these disease states. In spite of no significant differences in alpha-diversity among the 4 groups, our results confirmed differences in gene abundances of numerous enzymes involved in tryptophan metabolism. Specifically, gene abundance of indolepyruvate decarboxylase, which generates IAA and I3Ald, was significantly elevated in individuals with axSpA while gene abundances in HC demonstrated a propensity towards tryptophan synthesis. Such genetic changes were not observed in CD, again suggesting disease specificity for axSpA. Given the emerging role of tryptophan and its metabolites in immune function, altogether these data indicate that tryptophan metabolism into I3Ald and then IAA is one mechanism by which the gut microbiome potentially influences the development of axSpA.
BackgroundDysbiosis occurs in spondyloarthritis (SpA) and inflammatory bowel disease (IBD), which is subdivided into Crohn’s disease (CD) and ulcerative colitis (UC). The immunologic consequences of alterations in microbiota, however, have not been defined. Intraepithelial lymphocytes (IELs) are T cells within the intestinal epithelium that are in close contact with bacteria and are likely to be modulated by changes in microbiota. We examined differences in human gut-associated bacteria and tested correlation with functional changes in IELs in patients with axial SpA (axSpA), CD, or UC, and in controls.MethodsWe conducted a case-control study to evaluate IELs from pinch biopsies of grossly normal colonic tissue from subjects with biopsy-proven CD or UC, axSpA fulfilling Assessment of SpondyloArthritis International Society (ASAS) criteria and from controls during endoscopy. IELs were harvested and characterized by flow cytometry for cell surface markers. Secreted cytokines were measured by ELISA. Microbiome analysis was by 16S rRNA gene sequencing from rectal swabs. Statistical analyses were performed with the Kruskal-Wallis and Spearman’s rank tests.ResultsThe total number of IELs was significantly decreased in subjects with axSpA compared to those with IBD and controls, likely due to a decrease in TCRβ+ IELs. We found strong, significant negative correlation between peripheral lymphocyte count and IEL number. IELs secreted significantly increased IL-1β in patients with UC, significantly increased IL-17A and IFN-γ in patients with CD, and significantly increased TNF-α in patients with CD and axSpA as compared to other cohorts. For each disease subtype, IELs and IEL-produced cytokines were positively and negatively correlated with the relative abundance of multiple bacterial taxa.ConclusionsOur data indicate differences in IEL function among subjects with axSpA, CD, and UC compared to healthy controls. We propose that the observed correlation between altered microbiota and IEL function in these populations are relevant to the pathogenesis of axSpA and IBD, and discuss possible mechanisms.Trial registrationClinicalTrials.gov, NCT02389075. Registered on 17 March 2015.Electronic supplementary materialThe online version of this article (10.1186/s13075-018-1639-3) contains supplementary material, which is available to authorized users.
Protein-based medications are expensive and susceptible to damage from mechanical shock, which may occur during shipping to patients from pharmacies. Our objectives were to evaluate the performance of 2 packaging systems and to describe the mechanical shock that occurs during shipments. The packaging systems evaluated were boxes containing expanded polystyrene (EPS) or soft lint-like foam, prepared with and without polymer cooling packs. In laboratory-based studies, accelerometers measured g forces in boxes dropped from varying heights. Transportation studies evaluated the EPS cooler when sent to locations via 2 vendors. The relationship between drop height and maximum force vector was approximately linear for drop heights of 7.5 00 through 30 00 , with lower magnitude forces at 45 00 and 60 00. Soft foam reduced force by 9.8 g on average compared to EPS (p < 0.009). The presence of polymer packs mitigated forces; frozen packs reduced forces by 28 g versus thawed packs (p < 0.001). Transportation experiments demonstrated most impacts were in the low (10-24 g) and low-medium (25-49 g) range (95% of all impacts). There was no difference between impacts during shipments with the vendors, and there was no correlation between distance traveled and number of impacts. Overall, mechanical shock during shipping is both prevalent and contingent upon the packing materials used.
Background Axial spondyloarthritis (axSpA) has strong connections with intestinal inflammation as occurs in Crohn’s disease (CD). However, the immunologic mechanisms that distinguish axSpA, CD, and those with features of both diseases (CD-axSpA) are unknown. This study aimed to address this question by initial unbiased single cell RNA-sequencing (scRNAseq) on a pilot cohort followed by validating findings using flow cytometry and ELISA in a larger cohort. Methods Two individuals each with CD, axSpA, CD-axSpA, and healthy controls (HC) were recruited for a pilot discovery scRNAseq cohort, and the validation cohort consisted of 18 axSpA, 24 CD, 13 CD-axSpA, and 17 HC that was evaluated by flow cytometry on PBMCs and ELISAs for plasma cytokines. Results Uniquely, PBMCs from subjects with CD-axSpA demonstrated a significant increase in granzyme B+ T cells of both CD4+ and CD8+ lineages by both scRNAseq and flow cytometry. T cell maturation was also greater in those with CD-axSpA, particularly the CD4+ granzyme B+ population. Pathway analysis suggested increased interferon response genes in all immune cell populations within CD-axSpA. Although IFN-γ was elevated in the plasma of a subset of subjects with CD-axSpA, IL-6 was also significantly elevated. Conclusions Our findings support the presence of a chronic interferonopathy in subjects with CD-axSpA characterized by interferon signaling by pathway analysis and an expansion of mature, cytotoxic T cells. These data indicate fundamental immunological differences between CD-axSpA and both of the putative “parent” conditions, suggesting that it is a distinct disease with unique natural history and treatment needs.
In order to generate meaningful metabolomic and microbiome data, the method of sample collection is critical. This study utilizes and compares two methods for intestinal tissue collection for evaluation of metabolites and microbiomes, finding that using a brush to sample the microbiome provides valuable data. However, for metabolomics assessment, biopsy samples may still be required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.