There is currently a need for vaccines that stimulate cell-mediated immunity-particularly that mediated by CD8+ cytotoxic T lymphocytes (CTLs)-against viral and tumor antigens. The optimal induction of cell-mediated immunity requires the presentation of antigens by specialized cells of the immune system called dendritic cells (DCs). DCs are unique in their ability to process exogenous antigens via the major histocompatibility complex (MHC) class I pathway as well as in their ability to activate naive, antigen-specific CD8+ and CD4+ T cells. Vaccine strategies that target or activate DCs in order to elicit potent CTL-mediated immunity are the subject of intense research. We report here that whole recombinant Saccharomyces cerevisiae yeast expressing tumor or HIV-1 antigens potently induced antigen-specific, CTL responses, including those mediating tumor protection, in vaccinated animals. Interactions between yeast and DCs led to DC maturation, IL-12 production and the efficient priming of MHC class I- and class II-restricted, antigen-specific T-cell responses. Yeast exerted a strong adjuvant effect, augmenting DC presentation of exogenous whole-protein antigen to MHC class I- and class II-restricted T cells. Recombinant yeast represent a novel vaccine strategy for the induction of broad-based cellular immune responses.
T-cell acute lymphoblastic leukemia (T-ALL) is mostly characterized by specific chromosomal abnormalities, some occurring in a mutually exclusive manner possibly delineating specific T-ALL subgroups. One subgroup, including MLL-rearranged, CALM-AF10 or inv(7)(p15q34) cases, is characterized by elevated expression of HOXA genes. Using a gene expression based clustering analysis of 67 T-ALL cases with recurrent molecular genetic abnormalities and 25 samples lacking apparent aberrations, we identified 5 new cases with elevated HOXA levels. Using array-CGH, a cryptic and recurrent deletion, del(9)(q34.11q34.13), was exclusively identified in 3 of these 5 cases. This deletion results in a conserved SET-NUP214 fusion product, that was also identified in the T-ALL cell line LOUCY. SET-NUP214 binds in the promoter regions of specific HOXA genes, where it interacts with CMR1 and DOT1L leading to the transcriptional activation of HOXA genes. Targeted inhibition of SET-NUP214 by siRNA abolished expression of HOXA genes, inhibited proliferation and induced differentiation in LOUCY but not in other T-ALL lines. We conclude that SET-NUP214 contributes to the pathogenesis of T-ALL by enforcing T-cell differentiation arrest.
Biomarkers for primary or secondary risk prediction of cardiovascular disease (CVD) are urgently needed to improve individual treatment and clinical trial design. The vast majority of biomarker discovery studies has concentrated on plasma/serum as an easily accessible source. Although numerous markers have been identified, their added predictive value on top of traditional risk factors has been limited, as the biological specimen does not specifically reflect expression profiles related with CVD progression and because the signal is often diluted by marker release from other organs. In contrast to serum markers, circulating cells serve as indicators of the actual disease state due to their active role in the pathogenesis of CVD and are responsible for the majority of secreted biomarkers. Therefore, the CIRCULATING CELLS study was initiated, focusing on the cellular effectors of atherosclerosis in the circulation. In total, 714 patients with coronary artery disease (CAD) symptoms were included. Blood cell fractions (monocytes, T-lymphocytes, platelets, granulocytes, PBMC) of all individual patients were isolated and stored for analysis. Concomitantly, extensive flow cytometric characterization of these populations was performed. From each patient, a detailed clinical profile together with extensive questionnaires about medical history and life style was obtained. Various high-throughput -omics approaches (protein, mRNA, miRNA) are currently being undertaken. Data will be integrated with advanced bioinformatics for discovery and validation of secondary risk markers for adverse events. Overall, the CIRCULATING CELLS study grants the interesting possibility that it will both identify novel biomarkers and provide useful insights into the pathophysiology of CAD in patients.
Coronary atherosclerosis represents the major cause of death in Western societies. As atherosclerosis typically progresses over years without giving rise to clinical symptoms, biomarkers are urgently needed to identify patients at risk. Over the past decade, evidence has accumulated suggesting cross-talk between the diseased vasculature and cells of the innate immune system. We therefore employed proteomics to search for biomarkers associated with severe atherosclerotic coronary lumen stenosis in circulating leukocytes. In a two-phase approach, we first performed in-depth quantitative profiling of the granulocyte proteome on a small pooled cohort of patients suffering from chronic (sub)total coronary occlusion and matched control patients using stable isotope peptide labeling, two-dimensional LC-MS/MS and data-dependent decision tree fragmentation. Over 3000 proteins were quantified, among which 57 candidate biomarker proteins remained after stringent filtering. The most promising biomarker candidates were subsequently verified in the individual samples of the discovery cohort using label-free, single-run LC-MS/MS analysis, as well as in an independent verification cohort of 25 patients with total coronary occlusion (CTO) and 19 matched controls. Our data reveal bactericidal/permeability-increasing protein (BPI) as a promising biomarker for severe atherosclerotic coronary stenosis, being down-regulated in circulating granulocytes of CTO patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.