The endothelium regulates vascular homeostasis, and endothelial dysfunction is a proximate event in the pathogenesis of atherothrombosis. Stimulation of the endothelium with proinflammatory cytokines or exposure to hemodynamic-induced disturbed flow leads to a proadhesive and prothrombotic phenotype that promotes atherothrombosis. In contrast, exposure to arterial laminar flow induces a gene program that confers a largely antiadhesive, antithrombotic effect. The molecular basis for this differential effect on endothelial function remains poorly understood. While recent insights implicate Kruppel-like factors (KLFs) as important regulators of vascular homeostasis, the in vivo role of these factors in endothelial biology remains unproven. Here, we show that endothelial KLF4 is an essential determinant of atherogenesis and thrombosis. Using in vivo EC-specific KLF4 overexpression and knockdown murine models, we found that KLF4 induced an antiadhesive, antithrombotic state. Mechanistically, we demonstrated that KLF4 differentially regulated pertinent endothelial targets via competition for the coactivator p300. These observations provide cogent evidence implicating endothelial KLFs as essential in vivo regulators of vascular function in the adult animal. IntroductionThrough the elaboration of numerous biological substances, ECs actively regulate fundamental physiological processes, such as regulation of blood coagulation, homing of immune cells, and barrier function. Studies over the past several decades have also identified key physiologic and pathologic phenotypic modulators of ECs. For example, stimulation of the endothelium with proinflammatory cytokines renders the endothelium dysfunctional, inducing a proadhesive and prothrombotic phenotype. In contrast, laminar flow induces critical genes that confer potent antithrombotic, antiadhesive, and antiinflammatory properties. The significance of fluid shear stress is evidenced by the observation that segments of the arterial tree exposed to laminar flow (e.g., straight regions of the vasculature) are less prone to the development of atherosclerotic lesions than are regions exposed to nonlaminar/disturbed flow (e.g., branch points). These observations have led to the current view that the balance of biochemical and biomechanical stimuli is the central determinant of vascular function under physiologic and pathologic conditions. Given the importance of the endothelium in vessel homeostasis, there is great interest in identifying molecular pathways that mediate the effects of both biochemical and biomechanical stimuli. Prior studies from our group and others have identified 2 members of the Kruppel-like factor (KLF) family of transcription factors, KLF2 and KLF4, as being of particular interest. Both KLF2 and KLF4 are induced by laminar flow and in in vitro stud-
Necroptosis is an important form of lytic cell death triggered by injury and infection, but whether mixed lineage kinase domain-like (MLKL) is sufficient to execute this pathway is unknown. In a genetic selection for human cell mutants defective for MLKL-dependent necroptosis, we identified mutations in IPMK and ITPK1, which encode inositol phosphate (IP) kinases that regulate the IP code of soluble molecules. We show that IP kinases are essential for necroptosis triggered by death receptor activation, herpesvirus infection, or a pro-necrotic MLKL mutant. In IP kinase mutant cells, MLKL failed to oligomerize and localize to membranes despite proper receptor-interacting protein kinase-3 (RIPK3)-dependent phosphorylation. We demonstrate that necroptosis requires IP-specific kinase activity and that a highly phosphorylated product, but not a lowly phosphorylated precursor, potently displaces the MLKL auto-inhibitory brace region. These observations reveal control of MLKL-mediated necroptosis by a metabolite and identify a key molecular mechanism underlying regulated cell death.
Highlights d MLKL N-terminal executioner domain (NED) is auto-inhibited by the linker-brace d Inositol pentakisphosphate 2-kinase (IPPK) synthesizes IP 6 to regulate necroptosis d Selective inositol phosphate (IP) repertoire binds three distinct sites in NED d Hierarchical direct activation of MLKL is induced by three IPs (IP 6 >IP 4 RIP 5
The ventricular-subventricular zone (V-SVZ), which lies in the walls of the lateral ventricles (LV), is the largest neurogenic niche within the adult brain. Whether radiographic contact with the LV influences survival in glioblastoma (GBM) patients remains unclear. We assimilated and analyzed published data comparing survival in GBM patients with (LV+GBM) and without (LV−GBM) radiographic LV contact. PubMed, EMBASE, and Cochrane electronic databases were searched. Fifteen studies with survival data on LV+GBM and LV−GBM patients were identified. Their Kaplan–Meier survival curves were digitized and pooled for generation of median overall (OS) and progression free (PFS) survivals and log-rank hazard ratios (HRs). The log-rank and reported multivariate HRs after accounting for the common predictors of GBM survival were analyzed separately by meta-analyses. The calculated median survivals (months) from pooled data were 12.95 and 16.58 (OS), and 4.54 and 6.25 (PFS) for LV+GBMs and LV−GBMs, respectively, with an overall log-rank HRs of 1.335 [1.204–1.513] (OS) and 1.387 [1.225–1.602] (PFS). Meta-analysis of log-rank HRs resulted in summary HRs of 1.58 [1.35–1.85] (OS, 10 studies) and 1.41 [1.22–1.64] (PFS, 5 studies). Meta-analysis of multivariate HRs resulted in summary HRs of 1.35 [1.14–1.58] (OS, 6 studies) and 1.64 [0.88–3.05] (PFS, 3 studies). Patients with GBM contacting the LV have lower survival. This effect may be independent of the common predictors of GBM survival, suggesting a clinical influence of V-SVZ contact on GBM biology.
Background:The transcription factor Krüppel-like factor 4 (KLF4) is a critical regulator of endothelial cell biology. Results: Sustained expression of endothelial KLF4 limits tumor growth by creating ineffective angiogenesis. Conclusion: KLF4 is an upstream regulator of angiogenesis in part by mediating Notch expression and activity. Significance: KLF4 regulates sprouting angiogenesis and may be a therapeutic target in regulation of tumor angiogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.