This study investigates bone-tooth association under compression to identify strain amplified sites within the bone-periodontal ligament (PDL)-tooth fibrous joint. Our results indicate that the biomechanical response of the joint is due to a combinatorial response of constitutive properties of organic, inorganic, and fluid components. Second maxillary molars within intact maxillae (N=8) of 5-month-old rats were loaded with a μ-XCT-compatible in situ loading device at various permutations of displacement rates (0.2, 0.5, 1.0, 1.5, 2.0 mm/min) and peak reactionary load responses (5, 10, 15, 20 N). Results indicated a nonlinear biomechanical response of the joint, in which the observed reactionary load rates were directly proportional to displacement rates (velocities). No significant differences in peak reactionary load rates at a displacement rate of 0.2 mm/min were observed. However, for displacement rates greater than 0.2 mm/min, an increasing trend in reactionary rate was observed for every peak reactionary load with significant increases at 2.0 mm/min. Regardless of displacement rates, two distinct behaviors were identified with stiffness (S) and reactionary load rate (LR) values at a peak load of 5 N (S5 N=290–523 N/mm) being significantly lower than those at 10 N (LR5 N=1–10 N/s) and higher (S10N–20 N=380–684 N/mm; LR10N–20 N=1–19 N/s). Digital image correlation revealed the possibility of a screw-like motion of the tooth into the PDL-space, i.e., predominant vertical displacement of 35 μm at 5 N, followed by a slight increase to 40 μm at 10 N and 50 μm at 20 N of the tooth and potential tooth rotation at loads above 10 N. Narrowed and widened PDL spaces as a result of tooth displacement indicated areas of increased apparent strain within the complex. We propose that such highly strained regions are “hot spots” that can potentiate local tissue adaptation under physiological loading and adverse tissue adaptation under pathological loading conditions.
The effects of alveolar bone socket geometry and bone-implant contact on implant biomechanics, and resulting strain distributions in bone were investigated. Following extraction of lateral incisors on a cadaver mandible, immediate implants were placed and bone-implant contact area, stability and bone strain were measured. In situ biomechanical testing coupled with micro X-ray microscope (μ-XRM) illustrated less stiff bone-implant complexes (701-822 N/mm) compared with bone-periodontal ligament (PDL)-tooth complexes (791-913 N/mm). X-ray tomograms illustrated that the cause of reduced stiffness was due to reduced and limited bone-implant contact. Heterogeneous elemental composition of bone was identified by using energy dispersive X-ray spectroscopy (EDS). The novel aspect of this study was the application of a new experimental mechanics method, that is, digital volume correlation, which allowed mapping of strains in volumes of alveolar bone in contact with a loaded implant. The identified surface and subsurface strain concentrations were a manifestation of load transferred to bone through bone-implant contact based on bone-implant geometry, quality of bone, implant placement, and implant design. 3D strain mapping indicated that strain concentrations are not exclusive to the bone-implant contact regions, but also extend into bone not directly in contact with the implant. The implications of the observed strain concentrations are discussed in the context of mechanobiology. Although a plausible explanation of surgical complications for immediate implant treatment is provided, extrapolation of results is only warranted by future systematic studies on more cadaver specimens and/or in vivo small scale animal models.
Introduction Radiographic methods have poor sensitivity for occlusal lesions and by the time the lesions are radiolucent they have typically progressed deep into the dentin. New more sensitive imaging methods are needed to detect occlusal lesions. In this study, cross-polarization optical coherence tomography (CP-OCT) and near-IR imaging were used to image questionable occlusal lesions (QOC's) that were not visible on radiographs but had been scheduled for restoration on 30 test subjects. Methods Near-IR reflectance and transillumination probes incorporating a high definition InGaAs camera and near-IR broadband light sources were used to acquire images of the lesions before restoration. The reflectance probe utilized cross-polarization and operated at wavelengths from 1500–1700-nm where there is an increase in water absorption for higher contrast. The transillumination probe was operated at 1300-nm where the transparency of enamel is highest. Tomographic images (6×6×7 mm3) of the lesions were acquired using a high-speed swept-source CP-OCT system operating at 1300-nm before and after removal of the suspected lesion. Results Near-IR reflectance imaging at 1500–1700-nm yielded significantly higher contrast (p<0.05) of the demineralization in the occlusal grooves compared with visible reflectance imaging. Stains in the occlusal grooves greatly reduced the lesion contrast in the visible range yielding negative values. Only half of the 26 lesions analyzed showed the characteristic surface demineralization and increased reflectivity below the dentinal-enamel junction (DEJ) in 3D OCT images indicative of penetration of the lesion into the dentin. Conclusion This study demonstrates that near-IR imaging methods have great potential for improving the early diagnosis of occlusal lesions.
This study demonstrates a novel biomechanics testing protocol. The advantage of this protocol includes the use of an in situ loading device coupled to a high resolution X-ray microscope, thus enabling visualization of internal structural elements under simulated physiological loads and wet conditions. Experimental specimens will include intact bone-periodontal ligament (PDL)-tooth fibrous joints. Results will illustrate three important features of the protocol as they can be applied to organ level biomechanics: 1) reactionary force vs. displacement: tooth displacement within the alveolar socket and its reactionary response to loading, 2) three-dimensional (3D) spatial configuration and morphometrics: geometric relationship of the tooth with the alveolar socket, and 3) changes in readouts 1 and 2 due to a change in loading axis, i.e. from concentric to eccentric loads. Efficacy of the proposed protocol will be evaluated by coupling mechanical testing readouts to 3D morphometrics and overall biomechanics of the joint. In addition, this technique will emphasize on the need to equilibrate experimental conditions, specifically reactionary loads prior to acquiring tomograms of fibrous joints. It should be noted that the proposed protocol is limited to testing specimens under ex vivo conditions, and that use of contrast agents to visualize soft tissue mechanical response could lead to erroneous conclusions about tissue and organ-level biomechanics.
Objectives The objective of this study was to evaluate age related changes age related changes in physical (structure/mechanical properties) and chemical (elemental/inorganic mineral content) properties of cementum layers interfacing dentin. Methods Human mandibular molars (N=43) were collected and sorted by age (younger = 19–39, middle = 40–60, older = 61–81 years). The structures of primary and secondary cementum (PC, SC) types were evaluated using light and atomic force microscopy (AFM) techniques. Chemical composition of cementum layers were characterized through gravimetric analysis by estimating ash weight and concentrations of Ca, Mn, and Zn trace elements in the analytes through inductively coupled plasma mass spectroscopy. The hardness of PC and SC was determined using microindentation and site-specific reduced elastic modulus properties were determined using nanoindentation techniques. Results PC contained fibrous, 1–3 µm wide hygroscopic radial PDL-inserts. SC illustrated PC-like structure adjacent to a multilayered architecture composing of regions that contained mineral dominant lamellae. The width of cementum dentin junction (CDJ) decreased as measured from cementum enamel junction (CEJ) to the tooth apex (49–21µm), and significantly decreased with age (44–23µm; p<0.05). The inorganic ratio defined as the ratio of post-burn to pre-burn increased with age within primary cementum (PC) and secondary cementum (SC). Cementum showed an increase in hardness with age (PC (0.40–0.46GPa), SC (0.37–0.43GPa)), while dentin showed a decreasing trend (coronal dentin (0.70–0.72GPa); apical dentin (0.63 – 0.73 GPa)). Significance The observed physicochemical changes are indicative of an increased mineralization of cementum and CDJ over time. Changes in tissue properties of the teeth can alter overall tooth biomechanics, and in turn the entire bone-tooth complex including the periodontal ligament. This study provides baseline information about the changes in physicochemical properties of cementum with age, which can be identified as adaptive in nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.