Large-area surface-plasmon polariton (SPP) interference lithography is presented, which uses an attenuated total reflection-coupling mode to excite the interference of the SPPs. The interference of the SPPs causes a highly directional intensity range in a finite depth of the electric field, which is good for noncontact. Finite-difference time-domain simulations of the interference on a thin resist layer show that broad-beam illumination with a p-polarized light at a wavelength of 441 nm can produce features as small as 60 nm with high contrast, smaller than lambda/7. Our results illustrate the potential for patterning periodic structures over large areas at low cost.
The chiral structures have displayed some inevitable and fascinating properties in many research fields, such as chemistry, biology, mathematics, and physics. In this Article, we report the use of stepwise glancing angle deposition technology to produce the 3D chiral nanostructures. Through the optimization of deposition parameters (such as the orientation angle of poly styrene spheres (PSs) array, the deposition angle, thickness, and number), a great number of chiral structures have been achieved, and their size depends on the diameter of PS spheres. These chiral structures all can be simulated and predesigned through the use of a 3D geometrical model, which greatly improves the efficiency of this method. In addition, the circular dichroism spectrum shows that these chiral structures own an obvious Cotton effect, indicating their potential application as 3D chiral metamaterials.
The effects of alveolar bone socket geometry and bone-implant contact on implant biomechanics, and resulting strain distributions in bone were investigated. Following extraction of lateral incisors on a cadaver mandible, immediate implants were placed and bone-implant contact area, stability and bone strain were measured. In situ biomechanical testing coupled with micro X-ray microscope (μ-XRM) illustrated less stiff bone-implant complexes (701-822 N/mm) compared with bone-periodontal ligament (PDL)-tooth complexes (791-913 N/mm). X-ray tomograms illustrated that the cause of reduced stiffness was due to reduced and limited bone-implant contact. Heterogeneous elemental composition of bone was identified by using energy dispersive X-ray spectroscopy (EDS). The novel aspect of this study was the application of a new experimental mechanics method, that is, digital volume correlation, which allowed mapping of strains in volumes of alveolar bone in contact with a loaded implant. The identified surface and subsurface strain concentrations were a manifestation of load transferred to bone through bone-implant contact based on bone-implant geometry, quality of bone, implant placement, and implant design. 3D strain mapping indicated that strain concentrations are not exclusive to the bone-implant contact regions, but also extend into bone not directly in contact with the implant. The implications of the observed strain concentrations are discussed in the context of mechanobiology. Although a plausible explanation of surgical complications for immediate implant treatment is provided, extrapolation of results is only warranted by future systematic studies on more cadaver specimens and/or in vivo small scale animal models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.