Structural probes used to help elucidate mechanistic information of the organocatalyzed asymmetric ketimine hydrosilylation have revealed a new catalyst with unprecedented catalytic activity, maintaining adequate performance at 0.01 mol% loading. A new 'dual activation' model has been proposed that relies on the presence of both a Lewis basic and Brønsted acidic site within the catalyst architecture.
A series of diverse natural product-like structures have been synthesised by the use of a number of novel transannulation reactions across a cyclononene ring. Transannular cyclisations through oxygen functionality have generated a number of bicyclo[5.3.1]systems containing bridged cyclic ethers and bicyclo[5.2.2]lactones, as well as a tetrahydrofuran-containing bridged analogue of hexacyclinic acid. An unprecedented Brønsted acid mediated transannular cyclisation between proximal carbons generated bicyclo[4.3.0]nonanes which form the core of the pinguisane and austrodorane families of sesquiterpenoids. In all cases the key factor that determined the mode of reactivity was the conformation of the nine-membered ring and the distance between the reacting centres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.