Summary Alzheimer’s Disease (AD) is complicated by pro-oxidant intraneuronal Fe2+ elevation as well as extracellular Zn2+ accumulation within amyloid plaque. We found that the AD β-amyloid protein precursor (APP) possesses ferroxidase activity mediated by a conserved H-ferritin-like active site, which is inhibited specifically by Zn2+. Like ceruloplasmin, APP catalytically oxidizes Fe2+, loads Fe3+ into transferrin, and has a major interaction with ferroportin in HEK293T cells (that lack ceruloplasmin) and in human cortical tissue. Ablation of APP in HEK293T cells and primary neurons induces marked iron retention, whereas increasing APP695 promotes iron export. Unlike normal mice, APP−/− mice are vulnerable to dietary iron exposure, which causes Fe2+ accumulation and oxidative stress in cortical neurons. Paralleling iron accumulation, APP ferroxidase activity in AD post-mortem neocortex is inhibited by endogenous Zn2+, which we demonstrate can originate from Zn2+-laden amyloid aggregates and correlates with Aβ burden. Abnormal exchange of cortical zinc may link amyloid pathology with neuronal iron accumulation in AD.
PBT2 is a copper/zinc ionophore that rapidly restores cognition in mouse models of Alzheimer's disease (AD). A recent Phase IIa double-blind, randomized, placebo-controlled trial found that the 250 mg dose of PBT2 was well-tolerated, significantly lowered cerebrospinal fluid (CSF) levels of amyloid-beta42, and significantly improved executive function on a Neuro-psychological Test Battery (NTB) within 12 weeks of treatment in patients with AD. In the post-hoc analysis reported here, the cognitive, blood marker, and CSF neurochemistry outcomes from the trial were subjected to further analysis. Ranking the responses to treatment after 12 weeks with placebo, PBT2 50 mg, and PBT2 250 mg revealed that the proportions of patients showing improvement on NTB Composite or Executive Factor z-scores were significantly greater in the PBT2 250 mg group than in the placebo group. Receiver-operator characteristic analyses revealed that the probability of an improver at any level coming from the PBT2 250 mg group was significantly greater, compared to placebo, for Composite z-scores (Area Under the Curve [AUC] =0.76, p=0.0007), Executive Factor z-scores (AUC =0.93, p=1.3 x 10(-9)), and near-significant for the ADAS-cog (AUC =0.72, p=0.056). There were no correlations between changes in CSF amyloid-beta or tau species and cognitive changes. These findings further encourage larger-scale testing of PBT2 for AD.
There is increasing evidence that some cancers are hierarchically organized, sustained by a relatively rare population of cancer-initiating cells (C-ICs). Although the capacity to initiate tumors upon serial transplantation is a hallmark of all C-ICs, little is known about the genes that control this process. Here, we establish that ID1 and ID3 function together to govern colon cancer-initiating cell (CC-IC) self-renewal through cell-cycle restriction driven by the cell-cycle inhibitor p21. Regulation of p21 by ID1 and ID3 is a central mechanism preventing the accumulation of excess DNA damage and subsequent functional exhaustion of CC-ICs. Additionally, silencing of ID1 and ID3 increases sensitivity of CC-ICs to the chemotherapeutic agent oxaliplatin, linking tumor initiation function with chemotherapy resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.