Purpose: The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT) x-ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x-ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s-DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x-ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology. Methods: A CNT x-ray source array was designed and evaluated against a set of targeted system performance parameters. Simulations were performed to determine the maximum anode heat load at the desired focal spot size and to design the electron focusing optics. Field emission current from CNT cathode was measured for an extended period of time to determine the stable life time of CNT cathode for an expected clinical operation scenario. The source array was manufactured, tested, and integrated with a Selenia scanner. An electronic control unit was developed to interface the source array with the detection system and to scan and regulate x-ray beams. The performance of the s-DBT system was evaluated using physical phantoms. Results: The spatially distributed CNT x-ray source array comprised 31 individually addressable x-ray sources covering a 30 angular span with 1 pitch and an isotropic focal spot size of 0.6 mm at full width at half-maximum. Stable operation at 28 kV(peak) anode voltage and 38 mA tube current was demonstrated with extended lifetime and good source-to-source consistency. For the standard imaging protocol of 15 views over 14, 100 mAs dose, and 2 Â 2 detector binning, the projection resolution along the scanning direction increased of 1.08. The improvement is more pronounced for faster scanning speeds, wider angular coverage, and smaller detector pixel sizes. The scanning speed depends on the detector, the number of views, and the imaging dose. With 240 ms detector readout time, the s-DBT system scanning time is 6.3 s for a 15-view, 100 mAs scan regardless of the angular coverage. The scanning speed can be reduced to less than 4 s when detectors become faster. Initial phantom studies showed good quality reconstructed images. Conclusions: A prototype s-DBT scanner has been developed and evaluated by retrofitting the Selenia rotating gantry DBT scanner with a spatially distributed CNT x-ray source array. Preliminary results show that it improves system spatial resolution substantially by eliminating image blur due to x-ray focal spot motion. The scanner speed of s-DBT system is independent of angular coverage and can be increased with faster detector without image degration. The accelerated lifetime measurement demo...
The restrictive measures implemented in response to the COVID-19 pandemic have triggered sudden massive changes to travel behaviors of people all around the world. This study examines the individual mobility patterns for all transport modes (walk, bicycle, motorcycle, car driven alone, car driven in company, bus, subway, tram, train, airplane) before and during the restrictions adopted in ten countries on six continents: Australia, Brazil, China, Ghana, India, Iran, Italy, Norway, South Africa and the United States. This cross-country study also aims at understanding the predictors of protective behaviors related to the transport sector and COVID-19. Findings hinge upon an online survey conducted in May 2020 (N = 9,394). The empirical results quantify tremendous disruptions for both commuting and non-commuting travels, highlighting substantial reductions in the frequency of all types of trips and use of all modes. In terms of potential virus spread, airplanes and buses are perceived to be the riskiest transport modes, while avoidance of public transport is consistently found across the countries. According to the Protection Motivation Theory, the study sheds new light on the fact that two indicators, namely income inequality, expressed as Gini index, and the reported number of deaths due to COVID-19 per 100,000 inhabitants, aggravate respondents’ perceptions. This research indicates that socio-economic inequality and morbidity are not only related to actual health risks, as well documented in the relevant literature, but also to the perceived risks. These findings document the global impact of the COVID-19 crisis as well as provide guidance for transportation practitioners in developing future strategies.
IntroductionUnderstanding how the COVID-19 pandemic has impacted our health and safety is imperative. This study sought to examine the impact of COVID-19’s stay-at-home order on daily vehicle miles travelled (VMT) and MVCs in Connecticut.MethodsUsing an interrupted time series design, we analysed daily VMT and MVCs stratified by crash severity and number of vehicles involved from 1 January to 30 April 2017, 2018, 2019 and 2020. MVC data were collected from the Connecticut Crash Data Repository; daily VMT estimates were obtained from StreetLight Insight’s database. We used segmented Poisson regression models, controlling for daily temperature and daily precipitation.ResultsThe mean daily VMT significantly decreased 43% in the post stay-at-home period in 2020. While the mean daily counts of crashes decreased in 2020 after the stay-at-home order was enacted, several types of crash rates increased after accounting for the VMT reductions. Single vehicle crash rates significantly increased 2.29 times, and specifically single vehicle fatal crash rates significantly increased 4.10 times when comparing the pre-stay-at-home and post-stay-at-home periods.DiscussionDespite a decrease in the number of MVCs and VMT, the crash rate of single vehicles increased post stay-at-home order enactment in Connecticut after accounting for reductions in VMT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.