We propose a new design for a cellular neural network with spintronic neurons and CMOS-based synapses. Harnessing the magnetoelectric and inverse Rashba-Edelstein effects allows natural emulation of the behavior of an ideal cellular network. This combination of effects offers an increase in speed and efficiency over other spintronic neural networks. A rigorous performance analysis via simulation is provided.INDEX TERMS Cellular neural network (CNN), CMOS, energy efficiency, magnetoelectric (ME), Rashba-Edelstein, spintronics.
A new spintronic nonvolatile memory cell analogous to 1T DRAM with non-destructive READ is proposed. The cells can be used as neural computing units. A dual-circuit neural network architecture is proposed to leverage these devices against the complex operations involved in convolutional networks. Simulations based on HSPICE and MATLAB were performed to study the performance of this architecture when classifying images as well as the effect of varying the size and stability of the nanomagnets. The spintronic cells outperform a purely charge-based implementation of the same network, consuming ≈ 100-pJ total energy per image processed.
We propose a dedicated winner-take-all circuit to efficiently implement the intra-column competition between cells in Hierarchical Temporal Memory which is a crucial part of the algorithm. All inputs and outputs are charge-based for compatibility with standard CMOS. The circuit incorporates memristors for competitive advantage to emulate a column with a cell in a predictive state. The circuit can also detect columns 'bursting' by passive averaging and comparison of the cell outputs. The proposed spintronic devices and circuit are thoroughly described and a series of simulations are used to predict the performance. The simulations indicate that the circuit can complete a nine-cell, nine-input competition operation in under 15 ns at a cost of about 25 pJ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.