In this study, we report the electrocatalytic behavior of the neutral, monomeric Cu(II) complex of diacetyl-bis(N-4-methyl-3-thiosemicarbazonato), CuL, for metal-assisted ligand-centered hydrogen evolution in acetonitrile and dimethylformamide. CuL displays a maximum turnover frequency (TOF) of 10 000 s in acetonitrile and 5100 s in dimethylformamide at an overpotential of 0.80 and 0.76 V, respectively. The rate law is first-order in catalyst and second-order in proton concentration. Gas analysis from controlled potential electrolysis confirms CuL as an electrocatalyst to produce H with a minimum Faradaic efficiency of 81% and turnover numbers as high as 73 while showing no sign of degradation over 23 h. The H evolution reaction (HER) was probed using deuterated acid, demonstrating a kinetic isotope effect of 7.54. A proton inventory study suggests one proton is involved in the rate-determining step. Catalytic intermediates were identified using H NMR, X-ray photoelectron, and UV-visible spectroscopies. All catalytic intermediates in the proposed mechanism were successfully optimized using density functional theory calculations with the B3LYP functional and the 6-311g(d,p) basis set and support the proposed mechanism.
A new pathway for homogeneous electrocatalytic H2 evolution and H2 oxidation has been developed using a redox active thiosemicarbazone and its zinc complex as seminal metal-free and transition-metal-free examples. Diacetyl-bis(N-4-methyl-3-thiosemicarbazone) and zinc diacetyl-bis(N-4-methyl-3-thiosemicarbazide) display the highest reported TOFs of any homogeneous ligand-centered H2 evolution catalyst, 1320 and 1170 s(-1), respectively, while the zinc complex also displays one of the highest reported TOF values for H2 oxidation, 72 s(-1), of any homogeneous catalyst. Catalysis proceeds via ligand-centered proton-transfer and electron-transfer events while avoiding traditional metal-hydride intermediates. The unique mechanism is consistent with electrochemical results and is further supported by density functional theory. The results identify a new direction for the design of electrocatalysts for H2 evolution and H2 oxidation that are not reliant on metal-hydride intermediates.
The noninnocent coordinatively saturated mononuclear metal-thiolate complex ReL3 (L = diphenylphosphinobenzenethiolate) serves as an electrocatalyst for hydrogen evolution or hydrogen oxidation dependent on the presence of acid or base and the applied potential. ReL3 reduces acids to H2 in dichloromethane with an overpotential of 380 mV and a turnover frequency of 32 ± 3 s(-1). The rate law displays a second-order dependence on acid concentration and a first-order dependence on catalyst concentration with an overall third-order rate constant (k) of 184 ± 2 M(-2) s(-1). Reactions with deuterated acid display a kinetic isotope effect of 9 ± 1. In the presence of base, ReL3 oxidizes H2 with a turnover frequency of 4 ± 1 s(-1). The X-ray crystal structure of the monoprotonated species [Re(LH)L2](+), an intermediate in both catalytic H2 evolution and oxidation, has been determined. A ligand-centered mechanism, which does not require metal hydride intermediates, is suggested based on similarities to the redox-regulated, ligand-centered binding of ethylene to ReL3.
In this article, we present a critical review of the reported performance of reverse osmosis (RO) and capacitive deionization (CDI) for brackish water (salinity < 5.0 g/L) desalination from the aspects of engineering, energy, economy and environment. We first illustrate the criteria and the key performance indicators to evaluate the performance of brackish water desalination. We then systematically summarize technological information of RO and CDI, focusing on the effect of key parameters on desalination performance, as well as energy-water efficiency, economic costs and environmental impacts (including carbon footprint). We provide in-depth discussion on the interconnectivity between desalination and energy, and the trade-off between kinetics and energetics for RO and CDI as critical factors for comparison. We also critique the results of technical-economic assessment for RO and CDI plants in the context of large-scale deployment, with focus on *Manuscript Click here to view linked References 2 lifetime-oriented consideration to total costs, balance between energy efficiency and clean water production, and pretreatment/post-treatment requirements. Finally, we illustrate the challenges and opportunities for future brackish water desalination, including hybridization for energy-efficient brackish water desalination, co-removal of specific components in brackish water, and sustainable brine management with innovative utilization. Our study reveals that both RO and CDI should play important roles in water reclamation and resource recovery from brackish water, especially for inland cities or rural regions.
The homogeneous, nonaqueous catalytic activity of the rhenium-thiolate complex ReL (L = diphenylphosphinobenzenethiolate) for the hydrogen evolution reaction (HER) has been transferred from nonaqueous homogeneous to aqueous heterogeneous conditions by immobilization on a glassy carbon electrode surface. A series of modified electrodes based on ReL and its oxidized precursor [ReL][PF] were fabricated by drop-cast methods, yielding catalytically active species with HER overpotentials for a current density of 10 mA/cm, ranging from 357 to 919 mV. The overpotential correlates with film resistance as measured by electrochemical impedance spectroscopy and film morphology as determined by scanning and transmission electron microscopy. The lowest overpotential was for films based on the ionic [ReL][PF] precursor with the inclusion of carbon black. Stability measurements indicate a 2 to 3 h conditioning period in which the overpotential increases, after which no change in activity is observed within 24 h or upon reimmersion in fresh aqueous, acidic solution. Electronic spectroscopy results are consistent with ReL as the active species on the electrode surface; however, the presence of an undetected quantity of catalytically active degradation species cannot be excluded. The HER mechanism was evaluated by Tafel slope analysis, which is consistent with a novel Volmer-Heyrovsky-Tafel-like mechanism that parallels the proposed homogeneous HER pathway. Proposed mechanisms involving traditional metal-hydride processes vs ligand-centered reactivity were examined by density functional theory, including identification and characterization of relevant transition states. The ligand-centered path is energetically favored with protonation of cis-sulfur sites culminating in homolytic S-H bond cleavage with H evolution via H atom coupling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.