Figure 1: iPhone 3GS photo enhanced to DSLR-quality by our method. Best zoomed on screen.Abstract Despite a rapid rise in the quality of built-in smartphone cameras, their physical limitations -small sensor size, compact lenses and the lack of specific hardware, -impede them to achieve the quality results of DSLR cameras. In this work we present an end-to-end deep learning approach that bridges this gap by translating ordinary photos into DSLR-quality images. We propose learning the translation function using a residual convolutional neural network that improves both color rendition and image sharpness. Since the standard mean squared loss is not well suited for measuring perceptual image quality, we introduce a composite perceptual error function that combines content, color and texture losses. The first two losses are defined analytically, while the texture loss is learned in an adversarial fashion. We also present DPED, a large-scale dataset that consists of real photos captured from three different phones and one high-end reflex camera. Our quantitative and qualitative assessments reveal that the enhanced image quality is comparable to that of DSLR-taken photos, while the methodology is generalized to any type of digital camera.
Over the last years, the computational power of mobile devices such as smartphones and tablets has grown dramatically, reaching the level of desktop computers available not long ago. While standard smartphone apps are no longer a problem for them, there is still a group of tasks that can easily challenge even high-end devices, namely running artificial intelligence algorithms. In this paper, we present a study of the current state of deep learning in the Android ecosystem and describe available frameworks, programming models and the limitations of running AI on smartphones. We give an overview of the hardware acceleration resources available on four main mobile chipset platforms: Qualcomm, HiSilicon, MediaTek and Samsung. Additionally, we present the realworld performance results of different mobile SoCs collected with AI Benchmark 1 that are covering all main existing hardware configurations. * We also thank Przemyslaw Szczepaniak (pszczepaniak@google.com), Google Inc., for writing and editing sections 2.7, 3.1 and 3.2. 1
As the popularity of mobile photography is growing constantly, lots of efforts are being invested now into building complex hand-crafted camera ISP solutions. In this work, we demonstrate that even the most sophisticated ISP pipelines can be replaced with a single end-to-end deep learning model trained without any prior knowledge about the sensor and optics used in a particular device. For this, we present PyNET, a novel pyramidal CNN architecture designed for fine-grained image restoration that implicitly learns to perform all ISP steps such as image demosaicing, denoising, white balancing, color and contrast correction, demoireing, etc. The model is trained to convert RAW Bayer data obtained directly from mobile camera sensor into photos captured with a professional high-end DSLR camera, making the solution independent of any particular mobile ISP implementation. To validate the proposed approach on the real data, we collected a large-scale dataset consisting of 10 thousand full-resolution RAW-RGB image pairs captured in the wild with the Huawei P20 cameraphone (12.3 MP Sony Exmor IMX380 sensor) and Canon 5D Mark IV DSLR. The experiments demonstrate that the proposed solution can easily get to the level of the embedded P20's ISP pipeline that, unlike our approach, is combining the data from two (RGB + B/W) camera sensors. The dataset, pretrained models and codes used in this paper are available on the project website: https://people.ee.ethz. ch/˜ihnatova/pynet.html
The performance of mobile AI accelerators has been evolving rapidly in the past two years, nearly doubling with each new generation of SoCs. The current 4th generation of mobile NPUs is already approaching the results of CUDAcompatible Nvidia graphics cards presented not long ago, which together with the increased capabilities of mobile deep learning frameworks makes it possible to run complex and deep AI models on mobile devices. In this paper, we evaluate the performance and compare the results of all chipsets from Qualcomm, HiSilicon, Samsung, MediaTek and Unisoc that are providing hardware acceleration for AI inference. We also discuss the recent changes in the Android ML pipeline and provide an overview of the deployment of deep learning models on mobile devices. All numerical results provided in this paper can be found and are regularly updated on the official project website 1 . * We also thank Oli Gaymond (ogaymond@google.com), Google Inc., for writing and editing section 3.1 of this paper. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.