This article introduces a quasi-deterministic channel model and a link level-focused channel model, developed with a focus on millimeter-wave outdoor access channels. Channel measurements in an open square scenario at 60 GHz are introduced as a basis for the development of the model and its parameterization. The modeling approaches are explained, and their specific area of application is investigated.
There is increasing faith that mmWave technology will be part of 5G wireless networks in the wide frequency range 30-90 GHz. Experimental measurements are used to model mmWave channels addressing issues like human body shadowing or reflections due to moving vehicles. In this paper a new quasi-deterministic (Q-D) approach is introduced for modeling mmWave channels. The proposed channel model allows natural description of scenario-specific geometric properties, reflection attenuation and scattering, ray blockage and mobility effects. This new channel modeling approach is of utmost importance for further measurement campaigns planning, channel model characterization, system level simulations and network access capacity estimations
The fifth-generation mobile networks (5G) will not only enhance mobile broadband services, but also enable connectivity for a massive number of Internet-of-Things devices, such as wireless sensors, meters or actuators. Thus, 5G is expected to achieve a 1000-fold or more increase in capacity over 4G. The use of the millimeter-wave (mmWave) spectrum is a key enabler to allowing 5G to achieve such enhancement in capacity. To fully utilize the mmWave spectrum, 5G is expected to adopt a heterogeneous network (HetNet) architecture, wherein mmWave small cells are overlaid onto a conventional macro-cellular network. In the mmWave-integrated HetNet, splitting of the control plane (CP) and user plane (UP) will allow continuous connectivity and increase the capacity of the mmWave small cells. mmWave communication can be used not only for access linking, but also for wireless backhaul linking, which will facilitate the installation of mmWave small cells. In this study, a proof-of-concept (PoC) was conducted to demonstrate the practicality of a prototype mmWave-integrated HetNet, using mmWave technologies for both backhaul and access.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.