In the present work, a novel study method of conductive liquids has been proposed. It is based on a discovered phenomenon of radiofrequency anisotropy of electrolyte solution, which arises in response to mechanical excitation of the solution. The phenomenon was observed during the development of a radiofrequency polarimetric contactless cardiograph. The electric field vector rotates after its transition through the pericardial region due to the acceleration changes of blood. Numerous in vitro experiments with monochromatic and impulse acoustic waves always induced the polarization rotation of the RF wave passing through an electrolyte solution. The response obtained from the solutions on acoustic excitation of the Heaviside function form demonstrates the effect of a solution “memory”. The dynamics of this process resembles the spin glasses magnetization. We hypothesized that there was a magnetic moment change within the solution, and the possible reason for it is an appearance of electromagnetic impulse caused by the same acoustic excitation. In a further experiment, we really captured a suspected electrical potential. Given that, we can declare at least three new physical effects never observed before for an electrolyte solution. The study method itself may provide broad options for remote measurement of the electrolyte solution parameters.
In the present work a new method of study of liquids has been proposed. It is based on phenomenon of radio frequency anisotropy of electrolyte solution discovered by us. It arises because of mechanical or acoustic excitation of the solution. We were observing the phenomenon during the development process of RF polarimetric contactless cardiograhpy. The electric field vector of transmitted 433.82 MHz signal becomes rotated after its transition through the pericardial region. That rotation depends on change of blood acceleration when passing through the chambers of the heart and large vessels. It has also been revealed that rotation occurs after RF wave passage through the physiological saline (0.9% NaCl) subjected to any mechanical excitation inside it like a jet appearing or soundwave passing. No significant difference was detected experimentally between NaCl and KCl solutions behaviour. It means that the mechanism of hydrodynamic separation of ions is apparently not suitable to explain the phenomenon. The response we have registered most likely resembles the magnetization process of spin glasses. From the nature of the response observed we have concluded that a fundamentally new physical effect is discovered. It may provide wide opportunities for remote measurement of the electrolyte solutions parameters using polarized radio-frequency signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.