Tubular cells may increase the synthesis of glycosaminoglycans to protect from the toxic insult of calcium oxalate crystals and oxalate ions, what could partially limit the lithogenesis.
Purpose. Radiocontrast agents (RAs) cause renal tubular damage by hemodynamic imbalance, which could cause hypoxic stimulus and direct cytotoxicity. However, reactive oxygen species (ROS) could be an important factor in RAs' direct cytotoxicity. This study investigated the involvement of ROS in deleterious effects produced by RAs on normoxic and hypoxic renal tubular cells. Materials and Methods. LLC-PK1 and MDCK were exposed to diatrizoate and ioxaglate in normoxic and hypoxic conditions. Apoptotic and necrotic cell death were assessed by acridine orange/ethidium bromide and annexin V methods. Hydrogen peroxide, superoxide anion, and malondialdehyde levels were analyzed by, respectively, 2′,7′-dichlorofluorescein, luminal, and thiobarbituric acid. Antioxidant agents were used to prevent cellular RAs damage. Results. Diatrizoate and ioxaglate decreased cellular viability in both cells, and this effect was enhanced by hypoxic conditions. Diatrizoate induced more injury than ioxaglate to both cell lines. LLC-PK1 underwent necrosis, while MDCK cells underwent apoptosis when exposed to diatrizoate. These results could not be attributed to an increase in osmolality. RAs did not increase hydrogen peroxide, superoxide anion or malondialdehyde levels in both cells. Additionally, N-acetyl-L-cysteine (NAC), ascorbic acid, α-tocopherol, glutathione, β-carotene, allopurinol, cimetidine, and citric acid did not protect cells against RAs damage. Surprising, NAC increased the cellular damage induced by ioxaglate in the both cell lines. Conclusion. The present study shows that RAs induce damage in cultured tubular cells, especially in hypoxic conditions. ROS were not involved in the observed RAs' cytotoxicity, and NAC increased ioxaglate-induced tubular damage.
Background/Aim: Previously we demonstrated that calcium oxalate (CaOx) in LLC-PK1 cells and oxalate in MDCK cells induce tubular damage and greater glycosaminoglycan synthesis. We test the hypothesis that reactive oxygen species (ROS) and prostaglandins mediate these effects. Methods: LLC-PK1 and MDCK cells were exposed to graded concentrations of CaOx, oxalate or both. Glycosaminoglycan synthesis was analyzed through metabolic labeling and gel electrophoresis. Cell permeability and lipid peroxidation were assessed by lactate dehydrogenase release and malondialdehyde levels. Hydrogen peroxide and superoxide anion were analyzed using 2′,7′-dichlorofluorescein and luminol. Cyclooxygenase-2 expression and prostaglandin E2 production were assessed by RT-PCR and ELISA, respectively. Results: In LLC-PK1 cells exposed to CaOx, we observed increased cell permeability, no induction of ROS or lipid peroxidation, inability to produce lipopolysaccharide-induced ROS and increases in prostaglandin E2. Indomethacin used alone increased glycosaminoglycan synthesis but did not potentiate CaOx-induced effects. In MDCK cells exposed to oxalate we observed increased cell permeability, ROS production only at higher concentrations and inability to produce lipopolysaccharide-induced ROS. Indomethacin alone had no effect but increased oxalate-induced glycosaminoglycan synthesis. Conclusions: Prostaglandins modulate endogenous production of glycosaminoglycans in LLC-PK1 cells, as well as regulate oxalate-induced glycosaminoglycan synthesis in MDCK cells. Rather than increasing, CaOx and oxalate blunted lipopolysaccharide-induced ROS production. We could speculate that patients with recurrent nephrolithiasis may lose antimicrobial protection induced by ROS during infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.