Summary The major facilitator superfamily transporter Rv1410 and the lipoprotein LprG (Rv1411) are encoded by a conserved two‐gene operon and contribute to virulence in Mycobacterium tuberculosis. Rv1410 was originally postulated to function as a drug efflux pump, but recent studies suggested that Rv1410 and LprG work in concert to insert triacylglycerides and lipoarabinomannans into the outer membrane. Here, we conducted microscopic analyses of Mycobacterium smegmatis lacking the operon and observed a cell separation defect, while surface rigidity measured by atomic force microscopy was found to be increased. Whereas Rv1410 expressed in Lactococcus lactis did not confer drug resistance, deletion of the operon in Mycobacterium abscessus and M. smegmatis resulted in increased susceptibility toward vancomycin, novobiocin and rifampicin. A homology model of Rv1410 revealed a periplasmic loop as well as a highly conserved aspartate, which were found to be essential for the operon’s function. Interestingly, influx of the fluorescent dyes BCECF‐AM and calcein‐AM in de‐energized M. smegmatis cells was faster in the deletion mutant. Our results unambiguously show that elevated drug susceptibility in the deletion mutant is caused by increased drug influx through a defective mycobacterial cell envelope and not by drug efflux mediated by Rv1410.
Many prey taxa use kairomones or alarm pheromones to assess the risk of predation in aquatic environments, and the rate at which these cues attenuate determines how precisely they indicate the local density of predators. We estimated the rate of degradation of chemical cues generated by Aeshna dragonfly larvae feeding on Rana temporaria tadpoles. The half-life of the cue was 35 h and was not influenced by whether it was aged in pond water or tap water or whether other tadpoles were present in the container in which cue-aging occurred. A review of other published estimates of predator cue half-life revealed values of 0.2-126 h, and variation among studies was unrelated to the type of aging water, the venue in which water was aged or prey behavior observed (laboratory, field), or the type of behavior that was recorded. We conclude that factors affecting the persistence of predator cues remain uncertain in spite of their importance for understanding the evolution of induced defenses. AbstractMany prey taxa use kairomones or alarm pheromones to assess the risk of predation in aquatic environments, and the rate at which these cues attenuate determines how precisely they indicate the local density of predators. We estimated the rate of degradation of chemical cues generated by Aeshna dragonfly larvae feeding on Rana temporaria tadpoles. The halflife of the cue was 35 h and was not influenced by whether it was aged in pond water or tap water or whether other tadpoles were present in the container in which cue-aging occurred. A review of other published estimates of predator cue half-life revealed values of 0.2-126 h, and variation among studies was unrelated to the type of aging water, the venue in which water was aged or prey behavior observed (laboratory, field), or the type of behavior that was recorded. We conclude that factors affecting the persistence of predator cues remain uncertain in spite of their importance for understanding the evolution of induced defenses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.