Small populations are predicted to have reduced capacity to adapt to environmental change for two reasons. First, population genetic models indicate that genetic variation and potential response to selection should be positively correlated with population size. The empirical support for this prediction is mixed: DNA markers usually reveal low heterozygosity in small populations, whereas quantitative traits show reduced heritability only in the smallest and most inbred populations. Quantitative variation can even increase in bottlenecked populations although this effect seems unlikely to increase the adaptive potential of populations. Second, individuals in small populations have lower fitness owing to environmental stress and genetic problems such as inbreeding, which can substantially increase the extinction probability of populations in changing environments. This second reason has not been included in assessments of critical population size assuring evolvability and makes it likely that many small threatened populations have a decreased potential for adaptation.
Organisms are capable of an astonishing repertoire of phenotypic responses to the environment, and these often define important adaptive solutions to heterogeneous and unpredictable conditions. The terms ‘phenotypic plasticity’ and ‘canalization’ indicate whether environmental variation has a large or small effect on the phenotype. The evolution of canalization and plasticity is influenced by optimizing selection‐targeting traits within environments, but inherent fitness costs of plasticity may also be important. We present a meta‐analysis of 27 studies (of 16 species of plant and 7 animals) that have measured selection on the degree of plasticity independent of the characters expressed within environments. Costs of plasticity and canalization were equally frequent and usually mild; large costs were observed only in studies with low sample size. We tested the importance of several covariates, but only the degree of environmental stress was marginally positively related to the cost of plasticity. These findings suggest that costs of plasticity are often weak, and may influence phenotypic evolution only under stressful conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.