Constituents of liquid smoke possess a huge potential to be converted as value-added chemicals, such as flavoring, antiseptics, antioxidants, or even fossil oil substitutes. However, liquid smoke instability, led by the presence of oxygenate compounds, is an obstacle for further utilization and processing. On the other hand, catalyst efficiency in hydrodeoxygenation (HDO) remains challenging. Sarulla natural zeolite (Z), with abundant availability, has not been comprehensively investigated in the catalytic performance of HDO. In this study, Sarulla natural zeolite with different Si/Al ratios, which are activated by several concentrations of hydrochloric acid and nickel supported by Z (Ni-Z) synthesized by wet impregnation, were evaluated for HDO of liquid smoke, particularly in reducing oxygenate compounds. Catalyst morphology, surface area, pores, and crystallinity are investigated. Catalytic performances were evaluated, particularly on reducing oxygenate compounds and the shifting of phenol and its derivatives. Furthermore, the liquid smoke product of HDO was analyzed by gas chromatography-mass spectrometry (GC-MS). The data obtained reveal that the HDO process of liquid smoke with the Z3 catalyst shows the best activity compared to Z5 and Z7, with phenol conversion of 62.39% and 11.93% of alkoxy reduction. Meanwhile, the best Ni metal catalyst system activity was given by the Ni-Z5 catalyst compared to Ni-Z3 and Ni-Z7, where phenol conversion and alkoxy reduction were at 60.06% and 11.49%, respectively.
: Material characteristics analysis of Sarulla natural zeolite (SNZ) with base activation has been carried out. The base used was NaOH at various concentrations; 0.2 M, 0.5 M, and 2 M. Base activated catalysts were characterized by X-ray Fluorescence (XRF), X-ray diffractometer (XRD), Fourier-transform Infrared (FTIR) Spectroscopy, Scanning Electron Microscopy (SEM) and gas adsorption analysis using BET method. The procedures applied have caused differences in adsorption and desorption rates as well as the crystallinity values of the catalytic materials. Moreover, the ratio of Si/Al contents has also changed at the lowest concentration. On the other hand, the crystallinity of catalysts has decreased at the highest concentration of base applied. The results are reinforced in FTIR characterization which shows the changes of silanol bonds to become silicate and aluminate. Furthermore, morphological analysis of the catalysts shows that homogenous surface was obtained at low concentration, while rough/lumpy surfaces was obtained at higher concentration.Abstrak : Analisis terhadap karakteristik material dari zeolit alam Sarulla (SNZ) dengan metode aktivasi basa telah dilakukan. Basa yang digunakan ialah NaOH dengan berbagai konsentrasi; 0,2 M; 0,5 M, dan 2 M. Katalis yang telah diaktivasi dengan basa kemudian dikarakterisasi dengan Analisis X-ray Fluorescence (XRF), X-ray diffractometer (XRD), Fourier-transform Infrared (FTIR) Spectroscopy, Scanning Electron Microscopy (SEM) dan Gas Adsorption menggunakan metode BET. Dari hasil penelitian, ditemukan perbedaan pada tingkat adsorpsi dan desorpsi, begitu juga dengan kristalinitas pada material katalis. Lebih jauh, rasio konten Si/Al juga berubah pada basa dengan konsentrasi terendah. Di sisi lain, tingkat kristalinitas dari katalis mengalami penurunan pada basa dengan konsentrasi tertinggi. Hasil ini diperkuat dengan data FTIR yang menunjukkan perubahan ikatan silanol menjadi silikat dan aluminat. Lebih jauh, analisis morfologi pada katalis menunjukkan bahwa permukaan yang homogen didapatkan dari penggunaan basa dengan konsentrasi rendah. Sebaliknya, basa dengan konsentrasi tinggi memberikan bentuk permukaan katalis yang tidak homogen serta kasar.
Printed newspaper is one of the print-based media published daily in large quantities. The focus of this research is to remove the ink from used newsprint with alkaline treatment by using ultrasound sonochemistry method. Newsprint sheets collected were characterized by mechanical and morphology tests using FT-IR, XRD, tensile test and SEM. FT-IR spectra analysis shows the absorption of C=C functional groups as the main components of newspapers at 1427 and 1635 cm-1 wavelengths. The treatment with alkaline solution increased the mechanical strength properties of paper. SEM morphology analysis result shows that the surface of paper becomes more rough after ultrasound-alkaline treatment compared to paper without ultrasound treatment (conventional treatment). The crystallinity value decreased with alkaline treatment. The longer the ultrasound duration was, the lower the crystallinity degree became.
The use of enzymes in the bio-deinking process of newspaper waste has promising potential. However, investigations on the concentration of enzyme combinations need to be carried out to obtain the optimum ratio of cellulase and laccase enzymes for the bio-deinking process of recycled newspapers. The mixture of the two enzymes at various ratios was used to remove the ink on paper pulp from used newspapers by mechanical disintegration method treatment and followed by the bio-deinking process in an incubator shaker. The characterization of functional groups, structures, and thermal properties of bio-deinked pulp paper was carried out by FTIR, XRD, DTG/TGA, and an analysis of the degree of brightness to the prepared paper. FTIR results confirmed three main components of papers, such as cellulose, hemicellulose, and lignin. The XRD results showed that the equal ratio of cellulase and laccase enzymes had an effect on a higher crystallinity index, which was 78.8% compared to those obtained from the conventional methods with a crystallinity index of 69.7%. Thermal analysis showed that the optimum combination of both enzymes contributed the most at the highest temperature where the rate of degradation decreased. Brightness analysis showed that bio-deinking had met the quality requirements for newsprint paper in SNI 7273:2008. Our findings show that the combination of cellulase and laccase enzymes at the same ratio can produce optimal bio-deinked pulp for paper fabrication with excellent characteristics in brightness, thermal, and physical properties.
There are 61 primary/ibtidaiyah schools, 18 junior high schools, and 18 senior high schools in the city of Sibolga, which is located in Teluk Tapian Nauli, with a total number of teachers of about 2000. This is in line with the vision of Sibolga city (2016-2021) in order to create a stable, advanced, and successful Sibolga City by producing highly competitive quality human beings in order to create a harmonious, peaceful, secure and unified society. As mentioned above, one of its mission points is to prepare human resources (HR) that have integrity, reliable, competitive, expert in science and technology so that they able to compete in the global job market. As the education stakeholder, Sibolga Education and Culture Official has plan many outstanding work programs such as made a collaboration in partnership with the Universitas Sumatera Utara community service team. As a result, based on field observations and discussions, it was known that one of the obstacle that facing by the teachers in Sibolga is not being able to provide teaching materials and also picture-based examination questions as contained in the question grid. Currently, there are several technology-driven applications that can be used to make images or graphics creating process easier. Two of them are, GeoGebra Classic that used to create graphics and images in mathematics and Chemdraw that used to create structure images that related to chemistry. In addition word optimization training was also conducted to optimize teacher on preparing teaching materials with Ms. word.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.