This paper presents a special two-phase transverse flux machine with disc rotor. Because of the noncomplex construction and by using simple 2D flux path and 3D printing methods the manufacturing costs are hold low. A design criterion is proposed for maximizing the torque density in the low speed range. To prove the concept and analyse the potential of this construction a first direct driven prototype was built. The experimental results confirm the viability of this proposal and provide the required information for further enhancements.
Purpose. To develop the imitation model of the frequency converter controlled high-speed induction motor with a squirrel-cage rotor in order to determine reasons causes electric motor vibrations and noises in starting modes. Methodology. We have applied the mathematical simulation of electromagnetic field in transient mode and imported obtained field model as an independent object in frequency converter circuit. We have correlated the simulated result with the experimental data obtained by means of the PID regulator factors. Results. We have made the simulation model of the high-speed induction motor with a squirrel-cage rotor speed control in AnsysRMxprt, Ansys Maxwell and Ansys Simplorer, approximated to their physical prototype. We have made models modifications allows to provide high-performance computing (HPC) in dedicated server and computer cluster to reduce the simulation time. We have obtained motor characteristics in starting and rated modes. This allows to make recommendations on determination of high-speed electric motor optimal deign, having minimum indexes of vibrations and noises. Originality. For the first time, we have carried out the integrated research of induction motor using simultaneously simulation models both in Ansys Maxwell (2D field model) and in Ansys Simplorer (transient circuit model) with the control low realization for the motor soft start. For the first time the correlation between stator and rotor slots, allows to obtain minimal vibrations and noises, was defined. Practical value. We have tested manufactured high-speed motor based on the performed calculation. The experimental studies have confirmed the adequacy of the model, which allows designing such motors for new high-speed construction, and upgrade the existing ones. References 15, tables 3, figures 15.
This article deals with a commercially available direct drive brushless DC motor that was investigated in the generator mode at an increased speed above the rated one. During the conducted experiments the increase of the generator rotational speed was carried out due to a three-phase asynchronous motor with 5.5 kW rated power and 2920 rpm rated speed, which was further increased by a two-stage belt gearbox with a reduction ratio from 0.16 to 1.6. However, with an increase in the rotational speed, the magnetic losses also increase, which in turn increase the required value of the input mechanical power and lead to thermal overload of the brushless DC machine. An increase the generator rotational speed leads to an increase of the EMF value and, at the same value, of the stator current, leads to an increase the generated power. Throughout the experiment, the voltage was rectified using a diode bridge and bulk capacitor, after that it was connected to a load resistance. The presented calculations of the magnetic power losses for different electrical steel grades clearly demonstrate the nonlinear dependence between the magnetic field frequency and its magnitude. Experimental studies were carried out at different speeds of rotation of a brushless DC machine in a very wide range from 140 rpm to 5228 rpm, moreover, the values of the output power were obtained depending on the rotational speed. It is concluded, that in the generator mode of the brushless DC machine, it is necessary to take into account the feature of the operation at wind power plants, autonomous power supply such as hybrid power plants. In the first case, it is worth limiting the rotational speed from the driven mechanism, and in the second case, this mode of operation may be necessary for partial boosting of output power for short-term use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.