The fight against forgery of valuable items demands efficient and reasonably priced solutions. A security tag featuring holographic elements for anti-counterfeiting is one of them. However, the content and colours of a diffraction image that would be seen by an observer are often counterintuitive in the design stage. Here, we propose an original algorithm based on the conical diffraction formalism, which can be used to describe the variations of a diffraction image with respect to all aspects of observation. We validate the output of the algorithm by comparing it to test holograms, which we have produced by employing direct laser interference patterning (DLIP) in electrochemically grown nickel foil. We have employed a motorized femtosecond laser system to micro-machine arrays of 65 µm × 65 µm sized diffraction gratings with a defined orientation and pitch on the order of 1 µm. Based on completed diffraction efficiency measurements, we determined optimal ablation parameters, i.e. 57.4 mJ/cm2 fluence per pulse and 1100 pulses/pixel. Furthermore, we show how accurate the proposed algorithm is through measured diffraction spectra as well as captured diffraction images of test holograms produced using the obtained parameters. Finally, we showcase anti-counterfeiting tag prototypes with complex holographic effects, i.e. colour reconstruction, animation effects, and image multiplexing. The proposed algorithm can severely shorten the time between design and production of a holographic tag, especially when realizing it via a competitive origination technology—DLIP.
In this research we have evaluated the binding kinetics between an immobilized receptor and several genetically engineered ligands, differing by molecular mass or by the number of binding sites available for the binding to the receptor. Genetically engineered protein (GCSF-Receptor), which contains some antibody parts (Fc domain) and at some extent is similar to antibody because also has two binding sites that selectively bind another proteinglycoprotein granulocyte colony stimulating factor (GCSF), which was immobilized on a thin gold layer in order to design an immunosensor sensitive to GCSF. Three structurally different GCSF-based proteins were genetically-engineered and evaluated as ligands, which selectively bind to immobilized GCSF-Receptor: (i) GCSF monomer (mGCSF), (ii) GCSF-homodimer consisting of two via polypeptide Lα-based linker 'fused' GCSF molecules ((GCSF)2Lα) and (iii) GCSFheterodimer (SCF-Lα-GCSF), which is based on a native GCSF molecule 'fused' via Lα-based linker with another proteina soluble part of stem cell factor (SCF). SCF, unlike GCSF, does not contain any site suitable for GCSF-Receptor binding. The ligands differ by: (i) molecular mass -(GCSF)2Lα and SCF-Lα-GCSF F are two times heavier than mGCS, (ii) number of binding sites -mGCSF and SCF-Lα-GCSF have one binding site, while (GCSF)2Lα has two. The binding kinetics of mGCSF, (GCSF)2Lα, and SCF-Lα-GCSF with immobilized GCSF-Receptor was investigated using total internal reflection ellipsometry. The interaction kinetics of the mGCSF and SCF-Lα-GCSF are both well described using a standard Langmuir kinetics model. However, receptor-ligand association and dissociation rates in the case of SCF-Lα-GCSF ligand are about 10 times lower than that of mGCSF. The association rate of (GCSF)2Lα
We describe the iDO serious game developed during implementation of the Innovative Digital Training Opportunities on Dementia for Direct Care Workers (IDO) project. The project targets formal and informal caregivers of persons with dementia in order to improve caregiver knowledge and competences skills with a non-traditional source of training. This paper describes the steps faced to define the iDO caregiver behavior improvement model, design of game mechanics, development of game art and game characters, and implementation of gameplay. Furthermore, it aimed to assess the direct impact of the game on caregivers (n = 48) and seniors with early signs of dementia (n = 14) in Lithuania measured with the Geriatric Depression Scale (GDS) and Dementia Attitudes Scale (DAS). The caregivers’ GDS scores showed a decrease in negative answers from 13.4% (pre-game survey) to 5.2% (post-game survey). The seniors’ GDS scores showed a decrease in negative answers from 24.9% (pre-game survey) to 10.9% (post-game survey). The overall DAS scores increased from 6.07 in the pre-game survey to 6.41 in the post-game survey, statistically significant for both caregivers and seniors (p < 0.001), respectively. We conclude that the game aroused positive moods and attitudes for future caregivers of persons with dementia, indicating a more relaxed status and a decreased fear in accomplishing the caring process.
The mobile virtual reality based system for implementation of subjective visual vertical test, is accurate and applicable in the clinical environment. The gamepad-based virtual object control method was preferred by the users. The tests were well tolerated with low dizziness scores in the majority of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.