Single conical nanopores were functionalised layer by layer with weak polyelectrolytes. We studied their influence on the ionic diode properties We have considered different couples of polyelectrolytes: poly-l-lysine/poly(acrylic acid) and poly(ethyleneimine)/poly(acrylic acid) as well as the influence of cross-linking. The results show that the nanopores decorated with poly(ethyleneimine)/poly(acrylic acid) exhibit an interesting behavior. Indeed, at pH 3, the nanopore is open only at the low salt concentration, while at pH 7, it is already open. The nanopores functionalized with poly-l-lysine/poly(acrylic acid) do not show an inversion of ionic transport properties with the pH as expected. After cross-linked to prevent large conformational changes, the ionic diode properties are dependent on the pH.
The total internal reflection ellipsometry (TIRE) method was used for the excitation and study of the sensitivity properties of the hybrid Tamm plasmon polariton – surface plasmon polariton (TPP-SPP) and single surface plasmon resonance (SPR) modes of the GCSF receptor immobilization. Additionally, the optimized sensitivity of the hybrid TPP-SPP mode was investigated and compared with the single SPR mode when the BSA proteins formed a layer on the gold surface. The dispersion relations for the hybrid TPP-SPP and single SPR modes were used to explain the enhanced sensitivity of the ellipsometric parameters for the hybrid TPP-SPP mode over the conventional SPR. The SPP component (δΔh-SPP/δλ=53.9°/nm) of the hybrid TPP-SPP mode was about 6.4 times more sensitive than single SPR (δΔSPR/δλ=8.4°/nm) for the BSA protein layer on the gold film. It was found that the sensitivity of the hybrid plasmonic mode can be made controllable by using the strong coupling effect between the TPP and SPP components. The strong coupling regime reduces absorption and scattering losses of the metal for the SPP component in the hybrid TPP-SPP mode and, as a result, narrows the plasmonic resonance.
This review is dedicated to the development of molecularly imprinted polymers (MIPs) and the application of MIPs in sensor design. MIP-based biological recognition parts can replace receptors or antibodies, which are rather expensive. Conducting polymers show unique properties that are applicable in sensor design. Therefore, MIP-based conducting polymers, including polypyrrole, polythiophene, poly(3,4-ethylenedioxythiophene), polyaniline and ortho-phenylenediamine are frequently applied in sensor design. Some other materials that can be molecularly imprinted are also overviewed in this review. Among many imprintable materials conducting polymer, polypyrrole is one of the most suitable for molecular imprinting of various targets ranging from small organics up to rather large proteins. Some attention in this review is dedicated to overview methods applied to design MIP-based sensing structures. Some attention is dedicated to the physicochemical methods applied for the transduction of analytical signals. Expected new trends and horizons in the application of MIP-based structures are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.