The total internal reflection ellipsometry (TIRE) method was used for the excitation and study of the sensitivity properties of the hybrid Tamm plasmon polariton – surface plasmon polariton (TPP-SPP) and single surface plasmon resonance (SPR) modes of the GCSF receptor immobilization. Additionally, the optimized sensitivity of the hybrid TPP-SPP mode was investigated and compared with the single SPR mode when the BSA proteins formed a layer on the gold surface. The dispersion relations for the hybrid TPP-SPP and single SPR modes were used to explain the enhanced sensitivity of the ellipsometric parameters for the hybrid TPP-SPP mode over the conventional SPR. The SPP component (δΔh-SPP/δλ=53.9°/nm) of the hybrid TPP-SPP mode was about 6.4 times more sensitive than single SPR (δΔSPR/δλ=8.4°/nm) for the BSA protein layer on the gold film. It was found that the sensitivity of the hybrid plasmonic mode can be made controllable by using the strong coupling effect between the TPP and SPP components. The strong coupling regime reduces absorption and scattering losses of the metal for the SPP component in the hybrid TPP-SPP mode and, as a result, narrows the plasmonic resonance.
The total internal refection ellipsometry (TIRE) method was used for the generation and study of the hybrid TPP-SPP mode on a photonic crystal structure with a thin layer of silver and graphene/PMMA. Raman spectroscopy showed a consistent monolayer graphene present on the Ag layer. Recent studies have also shown that TPP and SPP components in the hybrid plasmonic mode is sensitive to the variation of coupling strength due to presence of the graphene monolayer. The decrease of the TPP and SPP dip components in the TPP-SPP hybrid mode can be explained by the changes of the conductivity of the silver layer due to the presence of this additional graphene/PMMA structure, which results in the non-optimal resonance conditions for the hybrid plasmonic mode. The modified positions of the TPP and SPP components in the wavelength spectra when compared to their original, separate excitations, indicates a strong coupling regime. The design of these hybrid plasmonic/graphene-based nanostructures has attractive capabilities for the development of advanced optical sensors and integrated optical circuit technologies.
Total internal reflection ellipsometry was employed for the excitation and study of hybrid Tamm plasmon-surface plasmon polaritons mode. Simple optical methodology using optical filters to cut the part of incident light spectra was proposed. Using optical filters measured energy spectra was divided into two parts where in each range only one branch of the hybrid TPP-SPP plasmonic mode was excited directly by the incident light. Present experimental studies have shown, that if the investigated system is in strong coupling, this is always enough to excite only one component of the hybrid excitation. Thus, its dispersion relation will be the same as when the excitation is done with a whole spectrum. In the case of the TPP-SPP hybrid mode where strong coupling is realized only in p-polarized light, the fitting results have shown that the strongest coupling was at the point where the noninteracting TPP and SPP curves should be crossing. The obtained Rabi splitting for the hybrid TPP and SPP modes in BK7 prism/1D PC TiO2/SiO2 (60 nm/110 nm)/TiO2 (30 nm)/Au (40 nm) multilayered structure was about 105 meV.
Surface plasmon polaritons (SPPs) based light–matter interactions play a major role in photonic sensor applications. In order to implement such sensors in microchip devices or reduce the fabrication costs, a method with high flexibility and large‐scale capabilities must be developed. Here, the formation of large‐scale gold microbumps arrays by using a direct laser writing technique is presented. The fabricated arrays exhibit the hybrid lattice plasmon polaritons in the Vis–NIR range, in the same range as metallic gratings fabricated by lithography‐based techniques. The peak of hybrid lattice plasmon resonance depends on the period of the fabricated arrays, the thickness of the gold film, coupled light polarization, and sample orientation. The experimental results are in good agreement with the theoretical estimation. The demonstrated method shows relevant technological progress in the formation of large‐scale metallic gratings by using a cost‐effective laser‐based technique. It provides new opportunities for hybrid lattice plasmon polariton (HLPP)‐based applications in biotechnology, photonics, plasmonics, and so on.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.