Recent research highlighted the impact of ROS as upstream regulators of tissue regeneration. We investigated their role and targeted processes during the regeneration of different body structures using the planarian Schmidtea mediterranea, an organism capable of regenerating its entire body, including its brain. The amputation of head and tail compartments induces a ROS burst at the wound site independently of the orientation. Inhibition of ROS production by diphenyleneiodonium (DPI) or apocynin (APO) causes regeneration defaults at both the anterior and posterior wound sites, resulting in reduced regeneration sites (blastemas) and improper tissue homeostasis. ROS signaling is necessary for early differentiation and inhibition of the ROS burst results in defects on the regeneration of the nervous system and on the patterning process. Stem cell proliferation was not affected, as indicated by histone H3-P immunostaining, fluorescence-activated cell sorting (FACS), in situ hybridization of smedwi-1, and transcript levels of proliferation-related genes. We showed for the first time that ROS modulate both anterior and posterior regeneration in a context where regeneration is not limited to certain body structures. Our results indicate that ROS are key players in neuroregeneration through interference with the differentiation and patterning processes.
The flatworm species Schmidtea mediterranea and Macrostomum lignano have become new and innovative model organisms in stem cell, regeneration and tissue homeostasis research. Because of their unique stem cell system, (lab) technical advantages and their phylogenetic position within the Metazoa, they are also ideal candidate model organisms for toxicity assays. As stress and biomarker screenings are often performed at the transcriptional level, the aim of this study was to establish a set of reference genes for qPCR experiments for these two model organisms in different stress situations. We examined the transcriptional stability of nine potential reference genes (actb, tubb, ck2, cox4, cys, rpl13, gapdh, gm2ap, plscr1) to assess those that are most stable during altered stress conditions (exposure to carcinogenic metals and salinity stress). The gene expression stability was evaluated by means of geNorm and NormFinder algorithms. Sets of best reference genes in these analyses varied between different stress situations, although gm2ap and actb were stably transcribed during all tested combinations. In order to demonstrate the impact of bad normalisation, the stress-specific gene hsp90 was normalised to different sets of reference genes. In contrast to the normalisation according to GeNorm and NormFinder, normalisation of hsp90 in Macrostomum lignano during cadmium stress did not show a significant difference when normalised to only gapdh. On the other hand an increase of variability was noticed when normalised to all nine tested reference genes together. Testing appropriate reference genes is therefore strongly advisable in every new experimental condition.
The planarian Schmidtea mediterranea is a well-studied model organism for developmental research, because of its stem cell system. This characteristic also provides a unique opportunity to study stress management and the effect of stress on stem cells. In this study, we characterised the stress signature at different levels of biological organization. The carcinogenic metal cadmium was used as a model chemical stressor. We focused on stem cell activity and its interaction with other known stress parameters. Here, we have found that S. mediterranea is able to cope with high internal levels of cadmium. At endpoints such as size and mobility, cadmium-related stress effects were detected but all of these responses were transient. Correspondingly, cadmium exposure led to an elevated mitotic activity of the neoblasts, at the same time points when the other responses disappeared. At the molecular level, we observed redox-related responses that can be linked with both repair as well as proliferation mechanisms. Together, our results suggest that these animals have a high plasticity. The induction of stem cell activity may underlie this 'restoring' effect, although a carcinogenic outcome after longer exposure times cannot be excluded.
Planarians have been long known for their regenerative ability, which hinges on pluripotency. Recently, however, the planarian model has been successfully established for routine toxicological screens aimed to assess overproliferation, mutagenicity and tumorigenesis. In this study, we focused on planarian tumor suppressor genes (TSGs) and their role during chemically induced carcinogenic stress in Schmidtea mediterranea. Combining in silico and proteomic screens with exposure to human carcinogen type 1A agent cadmium (Cd), we showed that many TSGs have a function in stem cells and that, in general, exposure to Cd accelerated the onset and increased the severity of the observed phenotype. This suggested that the interaction between environmental and genetic factors plays an important role in tumor development in S. mediterranea. Therefore, we further focused on the synergistic effects of Cd exposure and p53 knockdown (KD) at the cellular and molecular levels. Cd also produced a specific proteomic landscape in homeostatic animals, with 172 proteins differentially expressed, 43 of which were downregulated. Several of these proteins have tumor suppressor function in human and other animals, namely Wilms Tumor 1 Associated Protein (WT1), Heat Shock Protein 90 (HSP90), Glioma Pathogenesis-Related Protein 1 (GLIPR1) and Matrix Metalloproteinase B (Smed-MMPB). Both Glipr1 and MmpB KD produced large outgrowths, epidermal lesions and epidermal blisters. The epidermal blisters that formed as a consequence of Smed-MmpB KD were populated by smedwi1+ cells, many of which were actively proliferating, while large outgrowths contained ectopically differentiated structures, such as photoreceptors, nervous tissue and a small pharynx. In conclusion, Smed-MmpB is a planarian TSG that prevents stem cell proliferation and differentiation outside the proper milieu.
Aiming to in vivo characterize the responses of pluripotent stem cells and regenerative tissues to carcinogenic stress, we employed the highly regenerative organism Schmidtea mediterranea. Its broad regenerative capacities are attributable to a large pool of pluripotent stem cells, which are considered key players in the lower vulnerability toward chemically induced carcinogenesis observed in regenerative organisms. Schmidtea mediterranea is, therefore, an ideal model to study pluripotent stem cell responses with stem cells residing in their natural environment. Including microenvironmental alterations is important, as the surrounding niche influences the onset of oncogenic events. Both short- (3 days) and long-term (17 days) exposures to the genotoxic carcinogen methyl methanesulfonate (50 µM) were evaluated during homeostasis and animal regeneration, two situations that render altered cellular niches. In both cases, MMS-induced DNA damage was observed, which provoked a decrease in proliferation on the short term. The outcome of DNA damage responses following long-term exposure differed between homeostatic and regenerating animals. During regeneration, DNA repair systems were more easily activated than in animals in homeostasis, where apoptosis was an important outcome. Knockdown experiments confirmed the importance of DNA repair systems during carcinogenic exposure in regenerating animals as knockdown of rad51 induced a stem cell-depleted phenotype, after regeneration was completed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.