The comet assay is a versatile method to detect nuclear DNA damage in individual eukaryotic cells, from yeast to human. The types of damage detected encompass DNA strand breaks and alkali-labile sites (e.g., apurinic/ apyrimidinic sites), alkylated and oxidized nucleobases, DNA-DNA crosslinks, UV-induced cyclobutane pyrimidine dimers and some chemically induced DNA adducts. Depending on the specimen type, there are important modifications to the comet assay protocol to avoid the formation of additional DNA damage during the processing of samples and to ensure sufficient sensitivity to detect differences in damage levels between sample groups. Various applications of the comet assay have been validated by research groups in academia, industry and regulatory agencies, and its strengths are highlighted by the adoption of the comet assay as an in vivo test for genotoxicity in animal organs by the Organisation for Economic Co-operation and Development. The present document includes a series of consensus protocols that describe the application of the comet assay to a wide variety of cell types, species and types of DNA damage, thereby demonstrating its versatility.
Belgium, and especially the northern region called Flanders, has been a center of expertise in cochlear implants and early hearing screening for many years. Some of their surgeons and engineers were pioneers in the development of cochlear implants and in 1998 Flanders was the first region in Europe to implement a universal hearing screening program for all neonates. The Belgian National Institute for Health and Disability Insurance has reimbursed cochlear implants in children and adults since 1994 and bilateral implantation in children under the age of 12 years since February 2010. These deaf children, screened and implanted early, achieve higher auditory, speech and language outcomes and increasing numbers are going to regular schools using fewer interpreters. In 2010, 93% of severe-to-profound deaf preschool children in Flanders had received cochlear implants and 25% had bilateral implants. Although on average twice as many adults as children are implanted a year in Belgium, we have less research data available from this adult population. Also very little is published about the growth curves and minimal rehabilitation requirements (intensity, duration etc.) after implantation for both children and adults. So, there still remain many challenges for the future.
Silver nanoparticles (AgNPs) currently belong to the most commercialized nanomaterials, used in both consumer products and medical applications. Despite its omnipresence, in-depth knowledge on the potential toxicity of nanosilver is still lacking, especially for developing organisms. Research on vertebrates is limited due to ethical concerns, and planarians are an ideal invertebrate model to study the effects of AgNPs on stem cells and developing tissues in vivo, as regeneration mimics development by triggering massive stem cell proliferation. Our results revealed a strong interference of AgNPs with tissue-and neuroregeneration which was related to an altered stem cell cycle. The presence of a PVP-coating significantly influenced toxicity outcomes, leading to elevated DNAdamage and decreased stem cell proliferation. Non-coated AgNPs had an inhibiting effect on stem cell and early progeny numbers. Overall, regenerating tissues were more sensitive to AgNP toxicity, and careful handling and appropriate decision making is needed in AgNP applications for healing and developing tissues. We emphasize on the importance of AgNP characterization, as we showed that changes in physicochemical properties influence toxicity.
Planarians have been long known for their regenerative ability, which hinges on pluripotency. Recently, however, the planarian model has been successfully established for routine toxicological screens aimed to assess overproliferation, mutagenicity and tumorigenesis. In this study, we focused on planarian tumor suppressor genes (TSGs) and their role during chemically induced carcinogenic stress in Schmidtea mediterranea. Combining in silico and proteomic screens with exposure to human carcinogen type 1A agent cadmium (Cd), we showed that many TSGs have a function in stem cells and that, in general, exposure to Cd accelerated the onset and increased the severity of the observed phenotype. This suggested that the interaction between environmental and genetic factors plays an important role in tumor development in S. mediterranea. Therefore, we further focused on the synergistic effects of Cd exposure and p53 knockdown (KD) at the cellular and molecular levels. Cd also produced a specific proteomic landscape in homeostatic animals, with 172 proteins differentially expressed, 43 of which were downregulated. Several of these proteins have tumor suppressor function in human and other animals, namely Wilms Tumor 1 Associated Protein (WT1), Heat Shock Protein 90 (HSP90), Glioma Pathogenesis-Related Protein 1 (GLIPR1) and Matrix Metalloproteinase B (Smed-MMPB). Both Glipr1 and MmpB KD produced large outgrowths, epidermal lesions and epidermal blisters. The epidermal blisters that formed as a consequence of Smed-MmpB KD were populated by smedwi1+ cells, many of which were actively proliferating, while large outgrowths contained ectopically differentiated structures, such as photoreceptors, nervous tissue and a small pharynx. In conclusion, Smed-MmpB is a planarian TSG that prevents stem cell proliferation and differentiation outside the proper milieu.
Aiming to in vivo characterize the responses of pluripotent stem cells and regenerative tissues to carcinogenic stress, we employed the highly regenerative organism Schmidtea mediterranea. Its broad regenerative capacities are attributable to a large pool of pluripotent stem cells, which are considered key players in the lower vulnerability toward chemically induced carcinogenesis observed in regenerative organisms. Schmidtea mediterranea is, therefore, an ideal model to study pluripotent stem cell responses with stem cells residing in their natural environment. Including microenvironmental alterations is important, as the surrounding niche influences the onset of oncogenic events. Both short- (3 days) and long-term (17 days) exposures to the genotoxic carcinogen methyl methanesulfonate (50 µM) were evaluated during homeostasis and animal regeneration, two situations that render altered cellular niches. In both cases, MMS-induced DNA damage was observed, which provoked a decrease in proliferation on the short term. The outcome of DNA damage responses following long-term exposure differed between homeostatic and regenerating animals. During regeneration, DNA repair systems were more easily activated than in animals in homeostasis, where apoptosis was an important outcome. Knockdown experiments confirmed the importance of DNA repair systems during carcinogenic exposure in regenerating animals as knockdown of rad51 induced a stem cell-depleted phenotype, after regeneration was completed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.