Abstract. This review provides a community's perspective on air quality research focusing mainly on developments over the past decade. The article provides perspectives on current and future challenges as well as research needs for selected key topics. While this paper is not an exhaustive review of all research areas in the field of air quality, we have selected key topics that we feel are important from air quality research and policy perspectives. After providing a short historical overview, this review focuses on improvements in characterizing sources and emissions of air pollution, new air quality observations and instrumentation, advances in air quality prediction and forecasting, understanding interactions of air quality with meteorology and climate, exposure and health assessment, and air quality management and policy. In conducting the review, specific objectives were (i) to address current developments that push the boundaries of air quality research forward, (ii) to highlight the emerging prominent gaps of knowledge in air quality research, and (iii) to make recommendations to guide the direction for future research within the wider community. This review also identifies areas of particular importance for air quality policy. The original concept of this review was borne at the International Conference on Air Quality 2020 (held online due to the COVID 19 restrictions during 18–26 May 2020), but the article incorporates a wider landscape of research literature within the field of air quality science. On air pollution emissions the review highlights, in particular, the need to reduce uncertainties in emissions from diffuse sources, particulate matter chemical components, shipping emissions, and the importance of considering both indoor and outdoor sources. There is a growing need to have integrated air pollution and related observations from both ground-based and remote sensing instruments, including in particular those on satellites. The research should also capitalize on the growing area of low-cost sensors, while ensuring a quality of the measurements which are regulated by guidelines. Connecting various physical scales in air quality modelling is still a continual issue, with cities being affected by air pollution gradients at local scales and by long-range transport. At the same time, one should allow for the impacts from climate change on a longer timescale. Earth system modelling offers considerable potential by providing a consistent framework for treating scales and processes, especially where there are significant feedbacks, such as those related to aerosols, chemistry, and meteorology. Assessment of exposure to air pollution should consider the impacts of both indoor and outdoor emissions, as well as application of more sophisticated, dynamic modelling approaches to predict concentrations of air pollutants in both environments. With particulate matter being one of the most important pollutants for health, research is indicating the urgent need to understand, in particular, the role of particle number and chemical components in terms of health impact, which in turn requires improved emission inventories and models for predicting high-resolution distributions of these metrics over cities. The review also examines how air pollution management needs to adapt to the above-mentioned new challenges and briefly considers the implications from the COVID-19 pandemic for air quality. Finally, we provide recommendations for air quality research and support for policy.
Abstract. Residential wood combustion (RWC) is an important contributor to air quality in numerous regions worldwide. This study is the first extensive evaluation of the influence of RWC on ambient air quality in several Nordic cities. We have analysed the emissions and concentrations of PM2.5 in cities within four Nordic countries: in the metropolitan areas of Copenhagen, Oslo, and Helsinki and in the city of Umeå. We have evaluated the emissions for the relevant urban source categories and modelled atmospheric dispersion on regional and urban scales. The emission inventories for RWC were based on local surveys, the amount of wood combusted, combustion technologies and other relevant factors. The accuracy of the predicted concentrations was evaluated based on urban concentration measurements. The predicted annual average concentrations ranged spatially from 4 to 7 µg m−3 (2011), from 6 to 10 µg m−3 (2013), from 4 to more than 13 µg m−3 (2013) and from 9 to more than 13 µg m−3 (2014), in Umeå, Helsinki, Oslo and Copenhagen, respectively. The higher concentrations in Copenhagen were mainly caused by the relatively high regionally and continentally transported background contributions. The annual average fractions of PM2.5 concentrations attributed to RWC within the considered urban regions ranged spatially from 0 % to 15 %, from 0 % to 20 %, from 8 % to 22 % and from 0 % to 60 % in Helsinki, Copenhagen, Umeå and Oslo, respectively. In particular, the contributions of RWC in central Oslo were larger than 40 % as annual averages. In Oslo, wood combustion was used mainly for the heating of larger blocks of flats. In contrast, in Helsinki, RWC was solely used in smaller detached houses. In Copenhagen and Helsinki, the highest fractions occurred outside the city centre in the suburban areas. In Umeå, the highest fractions occurred both in the city centre and its surroundings.
The ceramic industry is an industrial sector in need of significant process changes, which may benefit from innovative technologies such as laser sintering of ceramic tiles. Such innovations result in a considerable research gap within exposure assessment studies for process-generated ultrafine and nanoparticles. This study addresses this issue aiming to characterise particle formation, release mechanisms and their impact on personal exposure during a tile sintering activity in an industrial-scale pilot plant, as a follow-up of a previous study in a laboratory-scale plant. In addition, possible particle transformations in the exhaust system, the potential for particle release to the outdoor environment, and the effectiveness of the filtration system were also assessed. For this purpose, a tiered measurement strategy was conducted. The main findings evidence that nanoparticle emission patterns were strongly linked to temperature and tile chemical composition, and mainly independent of the laser treatment. Also, new particle formation (from gaseous precursors) events were detected, with nanoparticles <30nm in diameter being formed during the thermal treatment. In addition, ultrafine and nano-sized airborne particles were generated and emitted into workplace air during sintering process on a statistically significant level. These results evidence the risk of occupational exposure to ultrafine and nanoparticles during tile sintering activity since workers would be exposed to concentrations above the nano reference value (NRV; 4×10(4)cm(-3)), with 8-hour time weighted average concentrations in the range of 1.4×10(5)cm(-3) and 5.3×10(5)cm(-3). A potential risk for nanoparticle and ultrafine particle release to the environment was also identified, despite the fact that the efficiency of the filtration system was successfully tested and evidenced a >87% efficiency in particle number concentrations removal.
Floor dust samples were collected from Jordanian indoor environments (eight dwellings and an educational building) in Amman. Quantitative PCR (qPCR) analyses of selected fungal and bacterial groups were performed. The bacterial and fungal concentrations were also correlated with PAHs concentrations, which were previously measured in the same samples by using GC-MS. The bacterial and fungal concentrations varied significantly among and within the tested indoor environments. Based on the collected samples in the entrance area of the dwellings, the largest variation was found in Gram-negative bacteria and total fungi concentration. The lowest bacterial and fungal concentrations were found in the dwelling that was least occupied and the most recently built. At the educational building, the Gram-positive bacteria concentrations were lower than those observed in the dwellings. Unlike for bacteria, we observed significant negative correlation with some polycyclic aromatic hydrocarbons (PAHs). This calls for further studies investigating biodegradation of PAHs in house dust and presence of potentially health hazardous PAH metabolites. Since biocontamination in floor dust has been given relatively little to no attention in the MENA region we recommend that more extensive measurements be conducted in the future with chemical and biological analysis of floor dust contaminants and their exposure indoors.
In this study, we performed elemental analysis for floor dust samples collected in Jordanian microenvironments (dwellings and educational building). We performed intercorrelation and cluster analysis between the elemental, polyaromatic hydrocarbon (PAH), and microorganism concentrations. In general, the educational building workshops had the highest elemental contamination. The age of the dwelling and its occupancy played a role on the elemental contamination level: older and more occupied dwellingshad greater contamination. The elemental contamination at a dwelling entrance was observed to be higher than in the living room. We found exceptionally high concentrations for Fe and Mn in the educational workshop and additionally, Hg, Cr, and Pb concentrations exceeded the limits set by the Canadian Council of Ministers of the Environment. According to the cluster analysis, we found three major groups based on location and contamination. According to the enrichment factor (EF) assessment, Al, Co, Mn, Ti, and Ba had EF < 2 (i.e., minimal enrichment) whereas P, S, Pb, Sb, Mo, Zn, Hg, and Cu had EF > 40 (i.e., extremely enriched). In contrast, Ca and P were geogenically enriched. Furthermore, significant Spearman correlations indicated nine subgroups of elemental contamination combined with PAHs and microbes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.