Crosslinking with 405 nm is better for pancreatic islets than crosslinking with 365 nm UV light. Materials Pancreatic islets Porcine pancreas was digested with collagenase NB8 (Nordmark, S1745602) and then was cultured for 24 h in CMRL 1066 (Gibco, 21530-027) with 10% FBS (EUR X Molecular Biology Products, E5050-03), 100 IU/mL penicillin and 100 μg/mL streptomycin (Corning, 30-002-Cl) and 5 mM glucose (Sigma Aldrich, G8270), in 37˚C and 5% CO 2. Three cell lines were used for the study. Alpha cells αTC1.6-alphaTC1 Clone 6-alpha cell from pancreas of the Mus musculus diseased on adenoma. This cell line was a gift from A. Dobrzyń,
Background: 3D bioprinting is the future of constructing functional organs. Creating a bioactive scaffold with pancreatic islets presents many challenges. The aim of this paper is to assess how the 3D bioprinting process affects islet viability. Methods: The BioX 3D printer (Cellink), 600 μm inner diameter nozzles, and 3% (w/v) alginate cell carrier solution were used with rat, porcine, and human pancreatic islets. Islets were divided into a control group (culture medium) and 6 experimental groups (each subjected to specific pressure between 15 and 100 kPa). FDA/PI staining was performed to assess the viability of islets. Analogous studies were carried out on α-cells, β-cells, fibroblasts, and endothelial cells. Results: Viability of human pancreatic islets was as follows: 92% for alginate-based control and 94%, 90%, 74%, 48%, 61%, and 59% for 15, 25, 30, 50, 75, and 100 kPa, respectively. Statistically significant differences were observed between control and 50, 75, and 100 kPa, respectively. Similar observations were made for porcine and rat islets. Conclusions: Optimal pressure during 3D bioprinting with pancreatic islets by the extrusion method should be lower than 30 kPa while using 3% (w/v) alginate as a carrier.
SummaryStudies have shown beneficial effects of machine perfusion (MP) on early kidney function and long-term graft survival. The aim of this study was to investigate whether the type of perfusion device could affect outcome of transplantation of deceased donor kidneys. A total of 50 kidneys retrieved from 25 donors were randomized to machine perfusion using a flow-driven (FD) device (RM3; Waters Medical Inc) or a pressure-driven (PD) device (LifePort; Organ Recovery Systems), 24 of these kidneys (n = 12 pairs; 48%) were procured from expanded criteria donors (ECD). The primary endpoints were kidney function after transplantation defined using the incidence of delayed graft function (DGF), the number of hemodialysis sessions required, graft function at 12 months, and analyses of biopsy. DGF was similar in both groups (32%; 8/25). Patients with DGF in the FD group required a mean of 4.66 hemodialysis sessions versus 2.65 in the PD group (P = 0.005). Overall, 1-year graft survival was 80% (20/25) vs. 96% (24/25) in the FD and PD groups. One-year graft survival of ECD kidneys was 66% (8/12) in the FD group versus 92% (11/12) in the PD group. Interstitial fibrosis and tubular atrophy were significantly more common in the FD group -45% (5/11) vs. 0% (0/9) (P = 0.03) in PD group. There were no differences in creatinine levels between the groups. Machine perfusion using a pressure-driven device generating lower pulse stress is superior to a flow-driven device with higher pulse stress for preserving kidney function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.