Calculating the abundance of thermally produced dark matter particles has become a standard procedure, with sophisticated methods guaranteeing a precision that matches the percent-level accuracy in the observational determination of the dark matter density. Here, we point out that one of the main assumptions in the commonly adopted formalism, namely local thermal equilibrium during the freeze-out of annihilating dark matter particles, does not have to be satisfied in general. We present two methods for how to deal with such situations, in which the kinetic decoupling of dark matter happens so early that it interferes with the chemical decoupling process: i) an approximate treatment in terms of a coupled system of differential equations for the leading momentum moments of the dark matter distribution, and ii) a full numerical solution of the Boltzmann equation in phase-space. For illustration, we apply these methods to the case of Scalar Singlet dark matter. We explicitly show that even in this simple model the prediction for the dark matter abundance can be affected by up to one order of magnitude compared to the traditional treatment.
Abstract:We have developed a general formalism to compute Sommerfeld enhancement (SE) factors for a multi-state system of fermions, in all possible spin configurations and with generic long-range interactions. We show how to include such SE effects in an accurate calculation of the thermal relic density for WIMP dark matter candidates. We apply the method to the MSSM and perform a numerical study of the relic abundance of neutralinos with arbitrary composition and including the SE due to the exchange of the W and Z bosons, photons and Higgses. We find that the relic density can be suppressed by a factor of a few in a sizable region of the parameter space, mostly for Wino-like neutralino with mass of a few TeV, and up to an order of magnitude close to a resonance.
We compute the present-day Wino dark matter annihilation cross-section including the one-loop radiative corrections together with the fully treated electroweak Sommerfeld effect. We discuss what is the consistent way of incorporating these two corrections simultaneously and why simply using the running coupling constants values at the Wino mass scale is not correct. The results show that up to a few TeV scale the full one-loop computation makes the cross-section smaller up to about 30% with respect to the Sommerfeld enhanced tree level result and are considerably larger than the tree or one-loop level without the Sommerfeld effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.