Process variations have a growing impact on circuit performance for today's integrated circuit (IC) technologies. The Non-Gaussian delay distributions as well as the correlations among delays make statistical timing analysis more challenging than ever. In this paper, we present an efficient block-based statistical timing analysis approach with linear complexity with respect to the circuit size, which can accurately predict Non-Gaussian delay distributions from realistic nonlinear gate and interconnect delay models. This approach accounts for all correlations, from manufacturing process dependence, to re-convergent circuit paths to produce more accurate statistical timing predictions. With this approach, circuit designers can have increased confidence in the variation estimates, at a low additional computation cost.
As interconnect feature sizes continue to scale to smaller dimensions, long interconnect can dominate the IC timing performance, but the interconnect parameter variations make it difficult to predict these dominant delay extremes. This paper presents a model order-reduction technique for RLC interconnect circuits that includes variational analysis to capture manufacturing variations. Matrix perturbation theory is combined with dominant-pole-analysis and Krylov-subspace-analysis methods to produce reduced-order models with direct inclusion of statistically independent manufacturing variations. The accuracy of the resulting variational reduced-order models is demonstrated on several industrial examples.
Due to the large die sizes and tight relative clock skew margins, the impact of interconnect manufacturing variations on the clock skew in today's gigahertz microprocessors can no longer be ignored. Unlike manufacturing variations in the devices, the impact of the interconnect manufacturing variations on IC timing performance cannot be captured by worst/best case corner point methods. Thus it is difficult to estimate the clock skew variability due to interconnect variations. In this paper we analyze the timing impact of several key statistically independent interconnect variations in a context-dependent manner by applying a previously reported interconnect variational order-reduction technique. The results show that the interconnect variations can cause up to 25% clock skew variability in a modern microprocessor design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.