Abstract-In this paper, we propose an efficient numerical algorithm for estimating the parametric yield of analog/RF circuits, considering large-scale process variations. Unlike many traditional approaches that assume normal performance distributions, the proposed approach is particularly developed to handle multiple correlated nonnormal performance distributions, thereby providing better accuracy than the traditional techniques. Starting from a set of quadratic performance models, the proposed parametric yield estimation conceptually maps multiple correlated performance constraints to a single auxiliary constraint by using a M AX operator. As such, the parametric yield is uniquely determined by the probability distribution of the auxiliary constraint and, therefore, can easily be computed. In addition, two novel numerical algorithms are derived from moment matching and statistical Taylor expansion, respectively, to facilitate efficient quadratic statistical M AX approximation. We prove that these two algorithms are mathematically equivalent if the performance distributions are normal. Our numerical examples demonstrate that the proposed algorithm provides an error reduction of 6.5 times compared to a normal-distribution-based method while achieving a runtime speedup of 10-20 times over the Monte Carlo analysis with 10 3 samples.Index Terms-Analog/RF circuits, M AX operator, parametric yield.