Global biodiversity is affected by numerous environmental drivers. Yet, the extent to which global environmental changes contribute to changes in local diversity is poorly understood. We investigated biodiversity changes in a meta-analysis of 39 resurvey studies in European temperate forests (3988 vegetation records in total, 17-75 years between the two surveys) by assessing the importance of (i) coarse-resolution (i.e., among sites) vs. fine-resolution (i.e., within sites) environmental differences and (ii) changing environmental conditions between surveys. Our results clarify the mechanisms underlying the direction and magnitude of local-scale biodiversity changes. While not detecting any net local diversity loss, we observed considerable among-site variation, partly explained by temporal changes in light availability (a local driver) and density of large herbivores (a regional driver). Furthermore, strong evidence was found that presurvey levels of nitrogen deposition determined subsequent diversity changes. We conclude that models forecasting future biodiversity changes should consider coarse-resolution environmental changes, account for differences in baseline environmental conditions and for local changes in fine-resolution environmental conditions.
Pollen productivity estimates of individual plant taxa are necessary when determining changes of vegetation cover during the Holocene. To date, studies describing this parameter in lowland temperate Europe have been carried out in cultural landscapes showing low forest cover and dominated by human activities. However, these may be of limited use when applied to reconstruct past land cover, for instance, from pre-agricultural landscapes. The aim of this paper is to ascertain whether pollen productivity from the closed-canopy old-growth forest in the Białowieża National Park, Poland, where human impact has been minimal for nearly a century, is different from that calculated in much more open landscapes. We ask: how much does forest antiquity and structure influence the amount of pollen released from particular taxa? We implemented maximum likelihood estimation of relative pollen productivity for seven tree species and for Poaceae using 18 modern pollen assemblages and distance-weighted plant abundances. Our results demonstrate that the ratio of pollen productivity between high producers (Pinus sylvestris and Quercus robur) and low producers (Poaceae, Corylus avellana) is on an average six times greater in Białowieża than across other European cultural landscapes. Pollen from forest Poaceae and C. avellana is six times more under-represented in old-growth forest than hitherto estimated from cultural landscapes. This finding reinforces the idea that pollen productivity can vary in response to changes in the prevailing environmental settings and we present for the first time a quantification of this variability, likely induced by differences in light availability.
The Viola epipsila-V. palustris complex is a highly taxonomically complicated group of species in its entire circumboreal range of distribution. Habitat loss, forest flooding, and hybridization could lead to the extinction of V. epipsila. A hybrid index and principal component analysis (PCA) were used to select qualitative and quantitative morphological features to distinguish parent species and hybrids, inter simple sequence repeat (ISSR) markers to determine the genetic diversity of the populations, flow cytometry to estimate the genome size (GS), and non-coding chloroplast DNA (cpDNA) regions to indicate the directions of crosses. All taxa are very morphologically variable, and their features can change within a season. The most stable feature is the distance of the bracts on the pedicel from the rhizome. The genetic diversity of all taxa populations is low and highly influenced by selfing and vegetative propagation. The population structure is differentiated: populations of V. epipsila or V. palustris, mixed populations with both parent species, F1 hybrids and populations with introgressive forms occur in different regions. The interspecific GS variation corresponds to the ploidy level (4x = 2.52 pg, 8x = 4.26 pg, 6x = 3.42 pg). Viola epipsila is the mother plant of the hybrids. Research has shown the risk of V. epipsila extinction in Central Europe and the importance of local populations in studying the role of hybridization in reducing/maintaining/increasing biodiversity.
Large trees are keystone structures for the functioning and maintenance of the biological diversity of wooded landscapes. Thus, we need a better understanding of large-tree–other-tree interactions and their effects on the diversity and spatial structure of the surrounding trees. We studied these interactions in the core of the Białowieża Primeval Forest—Europe’s best-preserved temperate forest ecosystem, characterized by high abundance of ancient trees. We measured diameter and bark thickness of the monumental trees of Acer platanoides L., Carpinus betulus L., Picea abies (L.) H. Karst, Quercus robur L., and Tilia cordata Mill., as well as the diameter and distance to the monumental tree of five nearest neighbor trees. The effects of the monumental tree on arrangements of the surrounding trees were studied with the help of linear models. We revealed that the species identity of a large tree had, in the case of C. betulus and T. cordata, a significant impact on the diversity of adjacent tree groupings, their distance to the central tree, and frequency of the neighboring trees. The distance between the neighbor and the large trees increased with the increasing diameter of the central tree. Our findings reinforce the call for the protection of large old trees, regardless of their species and where they grow from the geographical or ecosystem point of view.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.