Parnassius apollo (Lepidoptera, Papilionidae) declines on numerous localities all over Europe. Its local subspecies frankenbergeri, inhabiting the Pieniny Mts (southern Poland) and successfully recovered from extinction, is monophagous in larval stage. In natural conditions, it completes development on the orpine Sedum telephium ssp. maximum. Since proper quality and quantity of necessary nutritional compounds of the food plant ensure developmental success, the digestive processes in the insect midgut should reflect adaptation to a specific food source. The paper presents, for the first time, the activity of detected glycolytic enzymes in midgut tissue and liquid gut contents of the L 4 and L 5 instars of P. apollo larvae. α-Amylase plays the main role in utilization of carbohydrates, contrary to cellulase activity. Saccharase seems to be the main disaccharidase, and high activity of β-glycosidase enables hydrolysis of the plant glycosides. Trehalase activity was unexpectedly low and comparable to those of cellobiase and lactase. α-Amylolytic and other glycolytic activities indicate that larvae utilize starch and other carbohydrate compounds as energy sources. Possible use of some plant allelochemicals as energy sources by Apollo larvae is discussed.
Sequestration of plant secondary metabolites is a widespread phenomenon among aposematic insects. Sarmentosin is an unsaturated γ-hydroxynitrile glucoside known from plants and some Lepidoptera. It is structurally and biosynthetically closely related to cyanogenic glucosides, which are commonly sequestered from food plants and/or de novo synthesized by lepidopteran species. Sarmentosin was found previously in Parnassius (Papilionidae) butterflies, but it was not known how the occurrence was related to food plants or whether Parnassius species could biosynthesize the compound. Here, we report on the occurrence of sarmentosin and related compounds in four different Parnassius species belonging to two different clades, as well as their known and suspected food plants. There were dramatic differences between the two clades, with P. apollo and P. smintheus from the Apollo group containing high amounts of sarmentosin, and P. clodius and P. mnemosyne from the Mnemosyne group containing low or no detectable amounts. This was reflected in the larval food plants; P. apollo and P. smintheus larvae feed on Sedum species (Crassulaceae), which all contained considerable amounts of sarmentosin, while the known food plants of the two other species, Dicentra and Corydalis (Fumariaceae), had no detectable levels of sarmentosin. All insects and plants containing sarmentosin also contained other biosynthetically related hydroxynitrile glucosides in patterns previously reported for plants, but not for insects. Not all findings could be explained by sequestration alone and we therefore hypothesize that Parnassius species are able to de novo synthesize sarmentosin.
Parnassius apollo (Lepidoptera, Papilionidae) is considered to be typical stenophagous species. Its European forms fall generally into 'telephiophagous' or 'albophagous' trophic groups. According to some authors, 'telephiophagous' P. apollo ssp. frankenbergeri SLABY, inhabiting the Pieniny Mts, has a rather broad spectrum of food-plants. We aimed at defining its feeding preferences for successful breeding in a semi-natural colony on more than one commercially-available Sedum species. Larval development (L5) and performance were assessed in three experimental groups fed on different plant species selected in a preliminary test. Apollo larvae appeared to be quite specific in the plant choice and developed poorly in the absence of Sedum telephium. Possible reasons of this are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.