Glomerulonephritis (GN) isM esenchymal stem cells (MSC) hold special promise for renal repair, because nephrons are largely of mesenchymal origin (1). The potential of MSC for renal repair has been shown in rodent models of acute renal failure (ARF), where the course of glycerol, cisplatin, or ischemia-reperfusion induced ARF was improved by MSC injection shortly after disease induction (2-5). In addition, we recently reported that injection of rat MSC into a renal artery can accelerate recovery from mesangiolytic damage and prevent transient ARF in rat anti-Thy1.1 glomerulonephritis (GN) (6). AntiThy1.1 nephritis is a model of acute mesangioproliferative glomerulonephritis and is characterized by initial mesangiolysis followed within a few days by glomerular repair via endothelial and mesangial cell proliferation and accumulation of mesangial matrix. We have also provided evidence that MSC likely exerted these effects in glomeruli by paracrine effects, such as the release of high amounts of vascular endothelial growth factor (VEGF) and TGF-1 rather than by differentiation into resident glomerular cell types or monocytes/macrophages (6).In this study, we investigated the long-term effects of MSC administration in early anti-Thy1.1 nephritis. Normally, antiThy1.1 nephritis in rats follows a self-limited course, and spontaneous restitution of the glomerular architecture can be observed within approximately 4 wk. For enhancement of the relevance of the model for progressive renal disease in humans, the model in this study was aggravated and transformed into a course of progressive renal failure by previous uninephrectomy of the rats (7,8).
Materials and MethodsRats were housed under standard conditions in a light-, temperature-, and humidity-controlled environment with free access to tap water and standard rat diet. All animal protocols were approved by the local government authorities.
Harvest and Culture of MSCInbred male Lewis rats that weighed 180 to 210 g (Harlan, Horst, Netherlands) served as bone marrow donors; MSC were prepared as described previously (6). Cells were seeded onto six-well plates (nine
PDGF-D antagonism, even after the phase of acute glomerular damage, exerts beneficial effects on the course of tubulointerstitial damage, i.e. the final common pathway of most renal diseases.
The significance of the native urine sediment in the differential of glomerular diseases needs no further comment. However, the question arises whether it could be useful to develop a more specific diagnostic approach to identify the origin of renal epithelial cells that can be detected in the urine sediments as well. Especially the detection of podocytes in the urine could be a valuable noninvasive method to get information about the disease activity or disease type and could be used as a follow-up after a biopsy in an outpatient setting. So far, there are only a few studies that analyzed the clinical relevance of renal epithelial cells in the urine systematically or prospectively. The reason for this could be the nature of the material since it will remain unclear whether detachment and changes in the urine milieu have a direct effect on the expression of marker proteins on the detected cells. Dedifferentiation or transdifferentiation of cells that goes along with changed marker expression is certainly also part of the underlying disease process. This review summarizes the available information on marker proteins that have been successfully used in the diagnostic of "podocytes" in the urine. Furthermore, it gives an overview of marker expression on podocytes in situ in development and disease and examines the role of glomerular epithelial shedding in the urine at the interface of basic science and clinical medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.