Kidney fibrosis is the hallmark of chronic kidney disease progression, however, currently no antifibrotic therapies exist. This is largely because the origin, functional heterogeneity and regulation of scar-forming cells during human kidney fibrosis remains poorly understood. Here, using single cell RNA-seq, we profiled the transcriptomes of proximal tubule and non-proximal tubule cells in healthy and fibrotic human kidneys to map the entire human kidney in an unbiased approach. This enabled mapping of all matrix-producing cells at high resolution, revealing distinct subpopulations of pericytes and fibroblasts as the major cellular sources of scar forming myofibroblasts during human kidney fibrosis. We used genetic fate-tracing, time-course single cell RNA-seq and ATAC-seq experiments in mice, and spatial transcriptomics in human kidney fibrosis to functionally interrogate these findings, shedding new light on the origin, heterogeneity and differentiation of human kidney myofibroblasts and their fibroblast and pericyte precursors at unprecedented resolution. Finally, we used this strategy to facilitate target discovery, identifying
Nkd2
as a myofibroblast-specific target in human kidney fibrosis.
Renal fibrosis is the common end point of virtually all progressive kidney diseases. Renal fibrosis should not be viewed as a simple and uniform 'scar', but rather as a dynamic system that involves extracellular matrix components and many, if not all, renal and infiltrating cell types. The involved cells exhibit enormous plasticity or phenotypic variability-a fact that we are only beginning to appreciate. Only a detailed understanding of the underlying mechanisms of renal fibrosis can facilitate the development of effective treatments. In this Review, we discuss the most recent advances in renal, or more specifically, tubulointerstitial fibrosis. Novel mechanisms as well as potential treatment targets based on different cell types are described. Problems that continue to plague the field are also discussed, including specific therapeutic targeting of the kidney, the development of improved diagnostic methods to assess renal fibrosis and the shortcomings of available animal models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.