Although reverse osmosis produces high quality reusable water from wastewater the rejected concentrate (ROC) poses potentially serious health hazards to non-target species. This is especially the case when it is disposed into aquatic environments due to the presence of high concentrations of dissolved natural organics, micro-organic pollutants (MOPs) and other pollutants. In batch and column studies we found that granular activated carbon (GAC) was very effective in simultaneously removing dissolved organic carbon (DOC) and 18 MOPs from ROC. The amounts of all DOC fractions adsorbed (0.01-3 mg/g) were much higher than those of the MOPs (0.01-2.5 µg/g) mainly because ROC contained larger concentrations of 2 DOC fractions than MOPs. However, the partition coefficient which is a measure of the adsorbability was higher for most of the MOPs (0.21-21.6 L/g) than for the DOC fractions (0.01-0.45 L/g). The amount of DOC fraction adsorbed was in the order: humics > low molecular weights > building blocks > biopolymers (following mostly their concentrations in ROC). The partition coefficient was in the order: low molecular weights > humics > building blocks > biopolymers. The MOPs were classified into four groups based on their hydrophobicity (log Kow) and charge. The four positively charged MOPs with high hydrophobicity had the highest amounts adsorbed and partition coefficient, with 95-100% removal in the GAC column. The MOPs that are negatively charged, regardless of their hydrophobicity, had the lowest amounts adsorbed and partition coefficient with 73-94% removal.
The effects of polyurethane sponge size and type on the performance of an up-flow sponge bioreactor were studied using different sponge cube sizes (1 x 1 x 1 cm, 2 x 2 x 2 cm and 3 x 3 x 3 cm) and types of sponge (S28-30/45R, S28-30/60R, S28-30/80R and S28-30/90R). The reactors were operated under anaerobic conditions in an early stage and an aerobic condition in a latter stage. The results indicate that there was no significant difference in the organic and nutrient removal rates between sponge types. The medium size sponge (2 x 2 x 2 cm) had the best performance in terms of both biomass growth and pollutants removal. Under anaerobic condition, the COD, TN and TP removal efficiencies were up to 70%, 45% and 55%, respectively, and significantly improved under aerobic conditions (e.g. >90% TOC, 95% COD, 65% TN and 90% TP). The external biomass grew faster under anaerobic conditions while internal biomass was dominant under aerobic condition.
Sponges not only can reduce membrane fouling by means of mechanical cleaning and maintain a balance of suspended-attached microorganisms in submerged membrane bioreactor (SMBR), but also can enhance dissolved organic matter and nutrient removal. This study investigated the performance of three different sizes of sponge (S 28-30 /45R, S 28-30 /60R and S 28-30 /90R) associated with continuous aerated SMBR. A laboratory-scale single stage sponge-SMBR showed high performance for removing dissolved organic matter (>96%) and PO 4 -P (>98.8), while coarse sponges such as S 28-30 /45R, S 28-30 /60R could achieve more than 99% removal of NH 4 -N. When three-size sponges (S 28-30 /45R, S 28-30 /60R and S 28-30 /90R) were mixed at a ratio of 1:1:1 and in conjunction with two kinds of membranes (0.1 µm hollow fiber and 2 µm nonwoven), the sponge SMBR system has proved its generic merits of superior treated effluent quality and less membrane fouling. The NH 4 -N and PO 4 -P removal were found excellent, which were more than 99.8% and over 99% respectively. Molecular weight distribution also indicated that major fractions of organic matter could be successfully removed by sponge SMBR.
Nowadays, recycled water has provided sufficient flexibility to satisfy short-term freshwater needs and increase the reliability of long-term water supplies in many water scarce areas, which becomes an essential component of integrated water resources management. However, the current applications of recycled water are still quite limited that are mainly associated with non-potable purposes such as irrigation, industrial uses, toilet flushing and car washing. There is a large potential to exploit and develop new end uses of recycled water in both urban and rural areas. This can greatly contribute to freshwater savings, wastewater reduction and water sustainability. Consequently, the paper identified the potentials for the development of three recycled water new end uses, household laundry, livestock feeding and servicing, and swimming pool, in future water use market. To validate the strengths of these new applications, a conceptual decision analytic framework was proposed. This can be able to facilitate the optional management strategy selection process and thereafter provide guidance on the future end use studies within a larger context of the community, processes, and models in decision-making. Moreover, as complex evaluation criteria were selected and taken into account to narrow down the multiple management alternatives, the methodology can successfully add transparency, objectivity and comprehensiveness to the assessment. Meanwhile, the proposed approach could also allow flexibility to adapt to particular circumstances of each case under study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.