This article reports the results of the study related to emotion recognition by using eye-tracking. Emotions were evoked by presenting a dynamic movie material in the form of 21 video fragments. Eye-tracking signals recorded from 30 participants were used to calculate 18 features associated with eye movements (fixations and saccades) and pupil diameter. To ensure that the features were related to emotions, we investigated the influence of luminance and the dynamics of the presented movies. Three classes of emotions were considered: high arousal and low valence, low arousal and moderate valence, and high arousal and high valence. A maximum of 80% classification accuracy was obtained using the support vector machine (SVM) classifier and leave-one-subject-out validation method.
In the last decade of the XX-th century, several academic centers have launched intensive research programs on the brain-computer interface (BCI). The current state of research allows to use certain properties of electromagnetic waves (brain activity) produced by brain neurons, measured using electroencephalographic techniques (EEG recording involves reading from electrodes attached to the scalpthe non-invasive method-or with electrodes implanted directly into the cerebral cortex-the invasive method). A BCI system reads the user's "intentions" by decoding certain features of the EEG signal. Those features are then classified and "translated" (on-line) into commands used to control a computer, prosthesis, wheelchair or other device. In this article, the authors try to show that the BCI is a typical example of a measurement and control unit.
The challenges of research into brain–computer interfaces (BCI) include significant individual differences in learning pace and in the effective operation of BCI devices. The use of neurofeedback training is a popular method of improving the effectiveness BCI operation. The purpose of the present study was to determine to what extent it is possible to improve the effectiveness of operation of sensorimotor rhythm-based brain–computer interfaces (SMR-BCI) by supplementing user training with elements modifying the characteristics of visual feedback. Four experimental groups had training designed to reinforce BCI control by: visual feedback in the form of dummy faces expressing emotions (Group 1); flashing the principal elements of visual feedback (Group 2) and giving both visual feedbacks in one condition (Group 3). The fourth group participated in training with no modifications (Group 4). Training consisted of a series of trials where the subjects directed a ball into a basket located to the right or left side of the screen. In Group 1 a schematic image a face, placed on the controlled object, showed various emotions, depending on the accuracy of control. In Group 2, the cue and targets were flashed with different frequency (4 Hz) than the remaining elements visible on the monitor. Both modifications were also used simultaneously in Group 3. SMR activity during the task was recorded before and after the training. In Group 3 there was a significant improvement in SMR control, compared to subjects in Group 2 and 4 (control). Differences between subjects in Groups 1, 2 and 4 (control) were insignificant. This means that relatively small changes in the training procedure may significantly impact the effectiveness of BCI control. Analysis of behavioural data acquired from all participants at training showed greater effectiveness in directing the object towards the right side of the screen. Subjects with the greatest improvement in SMR control showed a significantly lower difference in the accuracy of rightward and leftward movement than others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.