A method for estimating mutagenic specificity in Escherichia coli (argE3, hisG4, thr-1, supE44), based upon the isolation of Arg+ or His+ revertants and identification of tRNA suppressors, is described. The method gives an insight not only into mutagenic pathways but also into the functioning of tRNA. With N-methyl-N'-nitro-N-nitrosoguanidine, 98% of mutations are GC----AT transitions. With N4-hydroxycytidine, 100% are AT----GC transitions. With hydroxylamine, apart from GC----AT transitions, approximately 30% of Arg+ revertants are formed by GC (or AT)----TA transversions. When the chemistry of the mutagenic attack is known, the method allows us to discriminate whether mutations occur on the transcribed or non-transcribed strands of DNA. It has been found that reversion of argE3 to Arg+ is a better monitor of mutagenic pathways than reversion of hisG4 to His+.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.