The infectious hepatitis B virus represents 42 nm spherical double-shelled particles. However, analysis of blood from hepatitis B virus carriers revealed the presence of smaller 22 nm particles consisting of a viral envelope surface protein. These particles are highly immunogenic and have been used in the design of hepatitis B virus vaccine produced in yeast. Upon expression in yeast, these proteins form virus-like particles that are used for parenteral immunization. Therefore, the DNA fragment encoding hepatitis B virus surface antigen was introduced into Agrobacterium tumerifacience LBA4404 and used to obtain transgenic lupin (Lupinus luteus L.) and lettuce (Lactuca sativa L.) cv. Burpee Bibb expressing envelope surface protein. Mice that were fed the transgenic lupin tissue developed significant levels of hepatitis B virus-specific antibodies. Human volunteers, fed with transgenic lettuce plants expressing hepatitis B virus surface antigen, developed specific serum-IgG response to plant produced protein.
Efficient immunization against hepatitis B virus (HBV) and other pathogens with plant-based oral vaccines requires appropriate plant expressors and the optimization of vaccine compositions and administration protocols. Previous immunization studies were mainly based on a combination of the injection of a small surface antigen of HBV (S-HBsAg) and the feeding with raw tissue containing the antigen, supplemented with an adjuvant, and coming from plants conferring resistance to kanamycin. The objective of this study was to develop a prototype oral vaccine formula suitable for human immunization. Herbicide-resistant lettuce was engineered, stably expressing through progeny generation micrograms of S-HBsAg per g of fresh weight and formed into virus-like particles (VLPs). Lyophilized tissue containing a relatively low, 100-ng VLP-assembled antigen dose, administered only orally to mice with a long, 60-day interval between prime and boost immunizations and without exogenous adjuvant, elicited mucosal and systemic humoral anti-HBs responses at the nominally protective level. Lyophilized tissue was converted into tablets, which preserved S-HBsAg content for at least one year of room temperature storage. The results of the study provide indications on immunization methodology using a durable, efficacious, and convenient plant-derived prototype oral vaccine against hepatitis B.
Lysenin is 297 amino acid long toxin derived from the earthworm Eisenia foetida which specifically recognizes sphingomyelin and induces cell lysis. We synthesized lysenin gene supplemented with a polyhistidine tag, subcloned it into the pT7RS plasmid and the recombinant protein was produced in Escherichia coli. In order to obtain lysenin devoid of its lytic activity, the protein was mutated by substitution of tryptophan 20 by alanine. The recombinant mutant lysenin-His did not evoke cell lysis, although it retained the ability to specifically interact with sphingomyelin, as demonstrated by immunofluorescence microscopy and by dot blot lipid overlay and liposome binding assays. We found that the lytic activity of wild-type lysenin-His was correlated with the protein oligomerization during interaction with sphingomyelin-containing membranes and the amount of oligomers was increased with an elevation of sphingomyelin/lysenin ratio. Blue native gel electrophoresis indicated that trimers can be functional units of the protein, however, lysenin hexamers and nanomers were stabilized by chemical cross-linking of the protein and by sodium dodecyl sulfate. When incorporated into planar lipid bilayers, wild type lysenin-His formed cation-selective channels in a sphingomyelin-dependent manner. We characterized the channel activity by establishing its various open/closed states. In contrast, the mutant lysenin-His did not form channels and its correct oligomerization was strongly impaired. Based on these results we suggest that lysenin oligomerizes upon interaction with sphingomyelin in the plasma membrane, forming cation-selective channels. Their activity disturbs the ion balance of the cell, leading eventually to cell lysis.
We show that using low denaturation temperatures (80-88 degrees C) during ligation mediated PCR (LM PCR) of bacterial DNA leads to the amplification of limited sets of the less stable DNA fragments. A set of electrophoretic patterns of such fragments obtained at different denaturation temperatures forms the PCR melting profile (PCR MP). A single pattern obtained for a given temperature and a set of patterns arising after application of several denaturation temperatures (PCR MP) are very specific for the given bacterial genome and may be used for strain characterisation and differentiation. The method may also be used for amplification and isolation of the less stable DNA fragments in a genome.
The nucleotide sequence of a 7.6 kb vaccinia DNA segment from a genomic region conserved among different orthopox virus has been determined. This segment contains a tight cluster of 12 partly overlapping open reading frames most of which can be correlated with previously identified early and late proteins and mRNAs. Regulatory signals used by vaccinia virus have been studied. Presumptive promoter regions are rich in A, T and carry the consensus sequences TATA and AATAA spaced at 20-24 base pairs. Tandem repeats of a CTATTC consensus sequence are proposed to be involved in the termination of early transcription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.