Tyre-to-road adhesion plays an important role when taking into account transmission of forces between tyres and road surface. It consequently influences vehicle safety. Moreover, it plays a significant role for modelling vehicle motion, which is often applied in the development of automotive active safety systems and in traffic accidents reconstruction. Furthermore, tyre-to-road adhesion properties are dependent on many factors. One of the factors is the type of tyre – summer or winter. This is the reason why it is justified to study the anti-slip properties of summer and winter tyres. This paper shows the method of measuring tyre-to-road adhesion coefficient. It is based on a skid resistance tester SRT-4 that consists of a special dynamometer trailer, towing vehicle and test-measuring equipment. It was designed to be applied in civil/road engineering and further developed. As a result, the SRT-4 system automatically obtains adhesion characteristics, such as the graph of tyre-to-road adhesion coefficient as a function of wheel slip ratio and velocity characteristics of peak adhesion coefficient. Results of the study present the above mentioned characteristics for different types of tyres (summer, winter) in different exploitation conditions. Differences between presented characteristics caused by tyre type and conditions of exploitation are shown. For example, for winter tyres we noticed that the peak value of adhesion coefficient was attained for higher values of slip ratio as compared with summer tyres.
This paper presents a method of identifying the dynamic characteristics of tyres for non-steady-state conditions on the basis of road measurements on a vehicle. The side force acting on the tyre is presented as a function of not only the slip angle but also the slip angle derivative (i.e. the velocity of the change in the slip angle). Hence, the influence of the manoeuvre dynamics on the tyre characteristics and the difference between the characteristics obtained for steady-state conditions and the characteristics for non-steady-state conditions are shown. Also the results of computer simulations prepared for different types of tyre characteristics are presented in this paper. It is evident from the presented graphs that applying dynamic non-linear tyre characteristics for computer simulations instead of steady-state characteristics enables us to describe the real motion of a vehicle better.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.