We consider optimization problems involving convex risk functions. By employing techniques of convex analysis and optimization theory in vector spaces of measurable functions, we develop new representation theorems for risk models, and optimality and duality theory for problems with convex risk functions.
We consider the problem of constructing mean{risk models which are consistent with the second degree stochastic dominance relation. By exploiting duality relations of convex analysis we develop the quantile model of stochastic dominance for general distributions. This allows us to show that several models using quantiles and tail characteristics of the distribution are in harmony with the stochastic dominance relation. We also provide stochastic linear programming formulations of these models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.