We consider the problem of constructing a portfolio of finitely many assets whose return rates are described by a discrete joint distribution. We propose a new portfolio optimization model involving stochastic dominance constraints on the portfolio return rate. We develop optimality and duality theory for these models. We construct equivalent optimization models with utility functions. Numerical illustration is provided.
We consider stochastic programming problems with probabilistic constraints involving integervalued random variables. The concept of a p-efficient point of a probability distribution is used to derive various equivalent problem formulations. Next we introduce the concept of r-concave discrete probability distributions and analyse its relevance for problems under consideration. These notions are used to derive lower and upper bounds for the optimal value of probabilistically constrained stochastic programming problems with discrete random variables. The results are illustrated with numerical examples.
We consider the problem of constructing a portfolio of finitely many assets whose return rates are described by a discrete joint distribution. We propose a new portfolio optimization model involving stochastic dominance constraints on the portfolio return rate. We develop optimality and duality theory for these models. We construct equivalent optimization models with utility functions. Numerical illustration is provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.