In Parkinson’s disease (PD), dopamine neurons containing neuromelanin selectively degenerate. Neuromelanin binds iron and accumulates in aging. Iron accumulates in reactive form during aging, PD, and is involved in neurodegeneration. It is not clear how the interaction of neuromelanin and iron can be protective or toxic by modulating redox processes. Here, we investigated the interaction of neuromelanin from human substantia nigra with iron in the presence of ascorbic acid, dopamine, and hydrogen peroxide. We observed that neuromelanin blocks hydroxyl radical production by Fenton’s reaction, in a dose‐dependent manner. Neuromelanin also inhibited the iron‐mediated oxidation of ascorbic acid, thus sparing this major antioxidant molecule in brain. The protective effect of neuromelanin on ascorbate oxidation occurs even in conditions of iron overload into neuromelanin. The blockade of iron into a stable iron–neuromelanin complex prevents dopamine oxidation, inhibiting the formation of neurotoxic dopamine quinones. The above processes occur intraneuronally in aging and PD, thus showing that neuromelanin is neuroprotective. The iron–neuromelanin complex is completely decomposed by hydrogen peroxide and its degradation rate increases with the amount of iron bound to neuromelanin. This occurs in PD when extraneuronal iron–neuromelanin is phagocytosed by microglia and iron–neuromelanin degradation releases reactive/toxic iron.
Sodium azide (NaN3) is widely employed to quench singlet oxygen during photodynamic therapy (PDT), especially when PDT is used to kill bacteria in suspension. We observed that addition of NaN3 (100 μM or 10 mM) to gram-positive Staphylococcus aureus and gram-negative Escherichia coli incubated with methylene blue (MB) and illuminated with red light gave significantly increased bacterial killing (1–3 logs), rather than the expected protection from killing. A different antibacterial photosensitizer, the conjugate between polyethylenimine and chlorin(e6) (PEI-ce6), showed reduced PDT killing (1–2 logs) after addition of 10 mM NaN3. Azide (0.5 mM) potentiated bacterial killing by Fenton reagent (hydrogen peroxide and ferrous sulfate) by up to 3 logs, but protected against killing mediated by sodium hypochlorite and hydrogen peroxide (considered to be a chemical source of singlet oxygen). The intermediacy of N3• was confirmed by spin-trapping and electron spin resonance studies in both MB-photosensitized reactions and Fenton reagent with addition of NaN3. We found that N3• was formed and bacteria were killed even in the absence of oxygen, suggesting the direct one-electron oxidation of azide anion by photoexcited MB. This observation suggests a possible mechanism to carry out oxygen-independent PDT.
In this work, we examined photoreactivity of synthetic eumelanins, formed by autooxidation of DOPA, or enzymatic oxidation of 5,6-dihydroxyindole-2-carboxylic acid and synthetic pheomelanins obtained by enzymatic oxidation of 5-S-cysteinyldopa or 1:1 mixture of DOPA and cysteine. Electron paramagnetic resonance oximetry and spin trapping were used to measure oxygen consumption and formation of superoxide anion induced by irradiation of melanin with blue light, and time-resolved near-infrared luminescence was employed to determine the photoformation of singlet oxygen between 300 and 600 nm. Both superoxide anion and singlet oxygen were photogenerated by the synthetic melanins albeit with different efficiency. At 450-nm, quantum yield of singlet oxygen was very low (~10 ) but it strongly increased in the UV region. The melanins quenched singlet oxygen efficiently, indicating that photogeneration and quenching of singlet oxygen may play an important role in aerobic photochemistry of melanin pigments and could contribute to their photodegradation and photoaging.
Melanin in the human retinal pigment epithelium (RPE) is believed to play an important photoprotective role. However, unlike in skin, melanosomes in the RPE are rather long-lived organelles, which increases their risk of modifications resulting from significant fluxes of light and high oxygen tension. In this work, we subjected purified bovine RPE melanosomes to prolonged aerobic exposure with intense visible and near ultraviolet radiation and studied the effects of irradiation on the melanosome's capacity to inhibit peroxidation of lipids induced by iron/ascorbate. We found that control, untreated melanosomes show a concentration-dependent inhibition of the accumulation of lipid hydroperoxides and the accompanying consumption of oxygen, but photolysed melanosomes lose their antioxidant efficiency and even became prooxidant. The prooxidant action of partially photobleached melanosomes was observed for pigment granules with a melanin content reduced by about 50% compared with untreated melanosomes, as determined by electron spin resonance spectroscopy. We have previously shown that a similar loss in the content of the RPE melanin occurs during human lifetime, which may suggest that the normal antioxidant properties of human RPE melanin become compromised with aging.
Although photodegradation of the retinal pigment epithelium (RPE) melanin may contribute to the etiology of age-related macular degeneration, the molecular mechanisms of this phenomenon and the structural changes of the modified melanin remain unknown. Recently, we found that the ratio of pyrrole-2,3,4,5-tetracarboxylic acid (PTeCA) to pyrrole-2,3,5-tricarboxylic acid (PTCA) is a marker for the heat-induced cross-linking of eumelanin. In this study, we examined UVA-induced changes in synthetic eumelanins to confirm the usefulness of the PTeCA/PTCA ratio as an indicator of photo-oxidation and compared changes in various melanin markers and their ratios in human melanocytes exposed to UVA, in isolated bovine RPE melanosomes exposed to strong blue light and in human RPE cells from donors of various ages. The results indicate that the PTeCA/PTCA ratio is a sensitive marker for the oxidation of eumelanin exposed to UVA or blue light and that eumelanin and pheomelanin in human RPE cells undergo extensive structural modifications due to the life-long exposure to blue light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.