The severe geomagnetic effects of solar storms or coronal mass ejections (CMEs) are to a large degree determined by their propagation direction with respect to Earth. There is a lack of understanding of the processes that determine their non-radial propagation. Here we present a synthesis of data from seven different space missions of a fast CME, which originated in an active region near the disk centre and, hence, a significant geomagnetic impact was forecasted. However, the CME is demonstrated to be channelled during eruption into a direction +37±10° (longitude) away from its source region, leading only to minimal geomagnetic effects. In situ observations near Earth and Mars confirm the channelled CME motion, and are consistent with an ellipse shape of the CME-driven shock provided by the new Ellipse Evolution model, presented here. The results enhance our understanding of CME propagation and shape, which can help to improve space weather forecasts.
The main objective of the study is to determine the probability distributions of the geomagnetic Dst index as a function of the coronal mass ejection (CME) and solar flare parameters for the purpose of establishing a probabilistic forecast tool for the intensity of geomagnetic storms. We examined several CME and flare parameters as well as the effect of successive CME occurrence in changing the probability for a certain range of Dst index values. The results confirm some previously known relationships between remotely observed properties of solar eruptive events and geomagnetic storms: the importance of the initial CME speed, apparent width, source position, and the class of the associated solar flare. We quantify these relationships in a form that can be used for future space-weather forecasting. The results of the statistical study are employed to construct an empirical statistical model for predicting the probability of the geomagnetic storm intensity based on remote solar observations of CMEs and flares.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.