A computer-based decision support system to assist radiologists in diagnosing and grading brain tumours has been developed by the multi-centre INTERPRET project. Spectra from a database of 1 H single-voxel spectra of different types of brain tumours, acquired in vivo from 334 patients at four different centres, are clustered according to their pathology, using automated pattern recognition techniques and the results are presented as a two-dimensional scatterplot using an intuitive graphical user interface (GUI). Formal quality control procedures were performed to standardize the performance of the instruments and check each spectrum, and teams of expert neuroradiologists, neurosurgeons, neurologists and neuropathologists clinically validated each case. The prototype decision support system (DSS) successfully classified 89% of the cases in an independent test set of 91 cases of the most frequent tumour types (meningiomas, low-grade gliomas and high-grade malignant tumours-glioblastomas and metastases). It also helps to resolve diagnostic difficulty in borderline cases. When the prototype was tested by radiologists and other clinicians it was favourably received. Results of the preliminary clinical analysis of the added value of using the DSS for brain tumour diagnosis with MRS showed a small but significant improvement over MRI used alone. In the comparison of individual pathologies, PNETs were significantly better diagnosed with the DSS than with MRI alone.
This paper describes a new quantitation method called AQSES for short echo time magnetic resonance spectra. This method is embedded in a software package available online from www.esat.kuleuven.be/sista/members/biomed/new/ with a graphical user interface, under an open source license, which means that the source code is freely available and easy to adapt to specific needs of the user. The quantitation problem is mathematically formulated as a separable nonlinear least-squares fitting problem, which is numerically solved using a modified variable-projection procedure. A macromolecular baseline is incorporated into the fit via nonparametric modelling, efficiently implemented using penalized splines. Unwanted components such as residual water are removed with a maximum-phase FIR filter. Constraints on the phases, dampings and frequencies of the metabolites can be imposed. AQSES has been tested on simulated MR spectra with several types of disturbance and on short echo time in vivo proton MR spectra. Results show that AQSES is robust, easy to use and very flexible.
A new classification approach was developed to improve the noninvasive diagnosis of brain tumors. Within this approach, information is extracted from magnetic resonance imaging and spectroscopy data, from which the relative location and distribution of selected tumor classes in feature space can be calculated. This relative location and distribution is used to select the best information extraction procedure, to identify overlapping tumor classes, and to calculate probabilities of class membership. These probabilities are very important, since they provide information about the reliability of classification and might provide information about the heterogeneity of the tissue. Classification boundaries were calculated by setting thresholds for each investigated tumor class, which enabled the classification of new objects. Results on histopathologically determined tumors are excellent, demonstrated by spatial maps showing a high probability for the correctly identified tumor class and, moreover, low probabilities for other tumor classes.
The purpose of this paper is to evaluate the effect of the combination of magnetic resonance spectroscopic imaging (MRSI) data and magnetic resonance imaging (MRI) data on the classification result of four brain tumor classes. Suppressed and unsuppressed short echo time MRSI and MRI were performed on 24 patients with a brain tumor and four volunteers. Four different feature reduction procedures were applied to the MRSI data: simple quantitation, principal component analysis, independent component analysis and LCModel. Water intensities were calculated from the unsuppressed MRSI data. Features were extracted from the MR images which were acquired with four different contrasts to comply with the spatial resolution of the MRSI. Evaluation was performed by investigating different combinations of the MRSI features, the MRI features and the water intensities. For each data set, the isolation in feature space of the tumor classes, healthy brain tissue and cerebrospinal fluid was calculated and visualized. A test set was used to calculate classification results for each data set. Finally, the effect of the selected feature reduction procedures on the MRSI data was investigated to ascertain whether it was more important than the addition of MRI information. Conclusions are that the combination of features from MRSI data and MRI data improves the classification result considerably when compared with features obtained from MRSI data alone. This effect is larger than the effect of specific feature reduction procedures on the MRSI data. The addition of water intensities to the data set also increases the classification result, although not significantly. We show that the combination of data from different MR investigations can be very important for brain tumor classification, particularly if a large number of tumors are to be classified simultaneously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.