Animals often exhibit consistent individual differences in behavior (i.e. animal personality) and correlations between behaviors (i.e. behavioral syndromes), yet the causes of those patterns of behavioral variation remain insufficiently understood. Many authors hypothesize that state-dependent behavior produces animal personality and behavioral syndromes. However, empirical studies assessing patterns of covariation among behavioral traits and state variables have produced mixed results. New statistical methods that partition correlations into between-individual and residual within-individual correlations offer an opportunity to more sufficiently quantify relationships among behaviors and state variables to assess hypotheses of animal personality and behavioral syndromes. In a population of wild Belding's ground squirrels (Urocitellus beldingi) we repeatedly measured activity, exploration, and response to restraint behaviors alongside glucocorticoids and nutritional condition. We used multivariate mixed models to determine whether between-individual or within-individual correlations drive phenotypic relationships among traits. Squirrels had consistent individual differences for all five traits. At the between-individual level, activity and exploration were positively correlated whereas both traits negatively correlated with response to restraint, demonstrating a behavioral syndrome. At the within-individual level, condition negatively correlated with cortisol, activity and exploration. Importantly, this indicates that although behavior is state-dependent, which may play a role in animal personality and behavioral syndromes, feedback mechanisms between condition and behavior appear not to produce consistent individual differences in behavior and correlations between them.
Social insects use odors as cues for a variety of behavioral responses, including nestmate recognition. Past research on nestmate recognition indicates cuticular hydrocarbons are important nestmate discriminators for social insects, but other factors are likely to contribute to colony-specific odors. Here we experimentally tested whether external microbes contribute to nestmate recognition in red harvester ants (Pogonomyrmex barbatus). We changed the external microbiome of ants through topical application of either antibiotics or microbial cultures. We then observed behavior of nestmates when treated ants were returned to the nest. Ants whose external microbiome was augmented with microbial cultures were much more likely to be rejected than controls, but ants treated with antibiotics were not. This result is consistent with the possibility that external microbes are used for nestmate recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.